
 

 

 

Hyperstructure Image Organiser 

 

 

 

 

Submitted September 2005, in partial fulfilment of the condition of the award of the degree M.Sc 

in Information Technology 

 

 

 

Joanne Louise Carter 

 

School of Computer Science and Information Technology 

University of Nottingham 

 

 

 

I hereby declare that this dissertation is all my own work, except as indicated in the text: 

 

Signature: _____________________ 

 

Date: ____ / ____ / ____ 



   

 

 

Abstract 

 

 

This dissertation researches the application of hyperstructure to multimedia organisation, and 

aims to discuss the development of an image organiser which facilitates the use of transclusion.  

It includes discussion of previous technologies such as semistructure and relational databases, 

along with the problems experienced with both.  Furthermore, it alludes to a similarity between 

the ideas of ZigZag and the mathematical theory of sets.  This culminates in a discussion of a new 

area of hyperstructure theory called Dimensional Informatics, which attempts to provide a 

mathematical underpinning to this field.  There is also analysis of the newly developed Mantra 

server, including both an evaluation and suggested improvements. 

 



    

 

 

Acknowledgements 

 

 

I would like to thank my supervisor, James Goulding, for his suggestions and comments 

throughout my dissertation.  In addition, I would like to thank the members of the Mantra 

development team, and the ZigZag research group for their contributions in discussions and their 

shared knowledge.   

 

I would also like to acknowledge my mother for her continued support throughout my education, 

and for her endless patience and invaluable proofreading. 

 



Table of Contents               -i- 

 

 

 

Table of Contents 

 

 

Chapter 1: Introduction.................................................................................................................... 1 

1.1. Motivation ............................................................................................................................ 2 

 

Chapter 2: Semistructure and Hyperstructure ................................................................................. 3 

2.1. Overview of Semistructured Data ........................................................................................ 3 

2.2. Overview of ZigZag ............................................................................................................. 5 

2.3. Overview of Mantra – Set Processing Language ............................................................... 10 

 

Chapter 3: ZigZag Structure and the Mantra Server ..................................................................... 13 

3.1. ZigZag Structure................................................................................................................. 13 

3.2. The Mantra Server .............................................................................................................. 18 

3.2.1. Introduction ................................................................................................................. 18 

3.2.2. Current Commands...................................................................................................... 18 

3.2.3. Cloning ........................................................................................................................ 19 

3.2.4. Ordering Cells ............................................................................................................. 20 

3.2.5. Typing.......................................................................................................................... 22 

3.2.6. Cell Content................................................................................................................. 24 

3.2.7. Type Specific Commands............................................................................................ 25 

3.2.8. Filtering ....................................................................................................................... 25 

3.2.9. Dimensions .................................................................................................................. 26 

3.2.10. History ....................................................................................................................... 30 

3.2.11. Zones of Purpose ....................................................................................................... 30 

3.2.12. Slices.......................................................................................................................... 31 

 

 



Table of Contents               -ii- 

 

Chapter 4: Design .......................................................................................................................... 33 

4.1. Introduction ........................................................................................................................ 33 

4.2. Flash ................................................................................................................................... 35 

4.3. Colour ................................................................................................................................. 36 

4.4. Colour Deficiency............................................................................................................... 38 

4.5. Fonts and Buttons ............................................................................................................... 42 

4.6. Accessibility ....................................................................................................................... 42 

4.7. Questionnaire Design ......................................................................................................... 44 

4.7.1. The Questions .............................................................................................................. 45 

4.7.2. The Results .................................................................................................................. 45 

 

Chapter 5: Implementation and Evaluation ................................................................................... 47 

5.1. Connecting to the Mantra Server........................................................................................ 47 

5.2. The Slideshow .................................................................................................................... 49 

5.3. The Sidebar......................................................................................................................... 53 

5.4. The ZigZag View................................................................................................................ 55 

5.5. Adding an Image ................................................................................................................ 61 

5.6. Changes made during implementation ............................................................................... 63 

5.7. Testing ................................................................................................................................ 64 

5.8. Conclusions ........................................................................................................................ 66 

 

References ..................................................................................................................................... 68 

 

Appendix A: User Manual............................................................................................................. 72 

A.1. Keyboard Shortcuts ........................................................................................................... 72 

A.1.1. ZigZag view commands: ............................................................................................ 72 

A.1.2. Normal view commands:............................................................................................ 73 

A.2. Loading the Image Organiser ............................................................................................ 73 

A.3. Connecting to the Server ................................................................................................... 73 

A.4. The ZigZag View............................................................................................................... 74 

A.5. The Normal View .............................................................................................................. 75 



Table of Contents               -iii- 

 

A.6. Adding Images................................................................................................................... 76 

 

Appendix B: The CD..................................................................................................................... 78 

B.1. Files on the CD .................................................................................................................. 78 

B.1.1. Code files .................................................................................................................... 78 

B.1.2. Flash Player files......................................................................................................... 78 

B.1.3. Windows Projector files.............................................................................................. 78 

B.1.4. Other files ................................................................................................................... 78 

5.9. System Requirements ......................................................................................................... 79 

 

Appendix C: Vision Questionnaire – zzImage .............................................................................. 80 

 

Appendix D: Code Listing............................................................................................................. 96 

D.1. Actionscript from Actions Layer, Frame 1, Scene 1 (Preloader) ...................................... 96 

D.2. Actionscript from Connection Layer, Scene 2 .................................................................. 96 

D.3. Actionscript from Actions Layer, Frame 1 (ZigZag View), Scene 2 .............................. 102 

D.4. Actionscript from Dim Pop-ups, Frame 1, Scene 2......................................................... 120 

D.4.1. Methods Layer .......................................................................................................... 120 

D.4.2. Actions Layer ........................................................................................................... 121 

D.4.3. Close Button ............................................................................................................. 121 

D.5. Actionscript from Action Layer, Frame 2 (Normal View), Scene 2 ............................... 121 

D.6. Actionscript from Actions Layer, Frame 3 (Add Image), Scene 2.................................. 129 

 

 



Table of Figures             -iv- 

 

 

 

Table of Figures 

 

 

Figure 2.1: A table representing a simple person relation............................................................... 6 

Figure 2.2: Breakdown of the original table into a set of binary relations. ..................................... 7 

Figure 2.3: An illustration of how each binary relation can be represented as a graph, with nodes 

and edges. ................................................................................................................................ 8 

Figure 2.4: An example mantra query. .......................................................................................... 11 

Figure 2.5: A message from a ZigZag client to the Mantra server and its response. .................... 11 

 

Figure 3.1: The ZigZag system cells ............................................................................................. 14 

Figure 3.2: The current default dimensions (d.history is inactive)................................................ 14 

Figure 3.3: Example structure for zzImage. .................................................................................. 15 

Figure 3.4: Revised structure for zzImage, incorporating d.set, d.contains and d.ordered........... 16 

Figure 3.5: The structure from Figure 3.4 represented via the mantraf client............................... 17 

Figure 3.6: The current Mantra query commands ......................................................................... 19 

Figure 3.7: Example of current method of cloning using Mantra ................................................. 19 

Figure 3.8: Example of the proposed ‘clone’ command ............................................................... 20 

Figure 3.9: Example of the proposed ‘order’ command................................................................ 21 

Figure 3.10: Example of the creation of a t.image cell.................................................................. 22 

Figure 3.11: Example of XML response from Mantra server after ‘resolve type’........................ 23 

Figure 3.12: Example of the ‘filter’ command.............................................................................. 26 

Figure 3.13: An example of a transitive set (ordered)................................................................... 27 

Figure 3.14: A diagram of a dim designator showing its relevant properties ............................... 27 

Figure 3.15: The current Mantra query required to fetch all the cells in a set .............................. 28 

Figure 3.16: Dimensions created with non-standard characters can only be referred to by their cell 

NRI ........................................................................................................................................ 29 



Table of Figures             -v- 

 

Figure 3.17: Dimensions created with alphabetical characters can be referred to by name or NRI

............................................................................................................................................... 29 

Figure 3.18: Dimensions created with alphabetical characters and the underscore should be able 

to be referred to by both name and NRI ................................................................................ 29 

Figure 3.19: Slices must be saved to ensure that recently created cells are not lost. .................... 32 

 

Figure 4.1: Some variables that affect contrast and visibility. ...................................................... 37 

Figure 4.2: Occurrence of colour vision deficiencies in the UK................................................... 38 

Figure 4.3: Possible gene distribution on 23rd chromosome ......................................................... 39 

Figure 4.4: Websafe selection (Normal – Red-blind – Green-blind – Blue-blind) ....................... 41 

 

Figure 5.1: The client accesses the Mantra server on the specified port ....................................... 47 

Figure 5.2: The server_connect function....................................................................................... 48 

Figure 5.3: The process_query_response function ........................................................................ 49 

Figure 5.4: Fetch all images, and send the result to the createSlideshow function ....................... 50 

Figure 5.5: The response from the server is sent to the createSlideshow function ....................... 51 

Figure 5.6: The images are loaded into the slideshow .................................................................. 51 

Figure 5.7: The show-one, skip-one progression pattern repeats infinitely .................................. 52 

Figure 5.8: A simple solution to the show-one, skip-one problem ............................................... 53 

Figure 5.9: A thumbnail version of the image is displayed on the sidebar ................................... 53 

Figure 5.10: The showTags function............................................................................................. 55 

Figure 5.11: An instance of node_container.................................................................................. 56 

Figure 5.12: The code to attach the movie clip ............................................................................. 56 

Figure 5.13: The ZigZag view, after the cells have been loaded................................................... 57 

Figure 5.14: The cell addresses can be toggled on and off by the ‘Show/Hide’ button................ 58 

Figure 5.15: The dimension list pop-up ........................................................................................ 59 

Figure 5.16: The mantra_node class in Flash MX......................................................................... 60 

Figure 5.17: The ‘Add Image’ page .............................................................................................. 61 

Figure 5.18: Error shown in debugging console............................................................................ 62 

Figure 5.19: Test plan and results.................................................................................................. 65 



Chapter 1: Introduction         -1- 

 

 

 

Chapter 1: Introduction 

 

 

Focusing on ZigZag, this project aims to research and build a photo organising system that 

facilitates transclusion. 

 

The current filing system is modelled on the original notion of files, folders and desktops, 

adapted from the visions of Bush [7] and Engelbart [7].  Indeed, even databases are based on a 

paper system.  Whilst universally accepted, these systems contain some fundamental flaws 

including multiple copies of files, versioning and imperfect knowledge (‘nulls’ or unknown data 

items).  Many people have developed alternative systems to try to overcome these problems, 

including Norman [17], [18], Raskin [20], Shneiderman [21] and Nelson [13], [14].  One such 

system currently under development, called ZigZag™, deals with these problems through the use 

of transclusion and binary decomposition. 

 

Additionally, due to competition among software companies it has become increasingly difficult 

to transfer files and information between applications.  This means that numerous pieces of 

information are predisposed to be duplicated, such as names and contact details.  This has been 

termed the “application prison” [12].  Ideally, ZigZag aims to help break out of this prison.  This 

can be achieved through the use of applitudes or “zones of purpose” [13].  As all ZigZag clients 

share the same data structure, this means that data can be shared easily between applitudes.  

Moreover, information does not need to exist more than once as data can be cloned through the 

use of transclusion.  The idea is the design of a hyperstructure-based computing environment 

which can be structured according to individual needs, rather than having to structure information 

around the applications provided by the computer. 

 

 



Chapter 1: Introduction         -2- 

 

 

1.1. Motivation 

 

 

The objective is to research the application of hyperstructure to multimedia organisation, in part 

utilising the new Mantra server [32].  This server has been developed by the Web Technologies 

Group [37] of the University of Nottingham to implement ZigZag structure.  It has been designed 

so that it can be expanded for use with any Dimensional Informatics based system (see 2.2 for 

discussion of Dimensional Informatics).  An image organiser has been selected as one of the first 

Mantra clients to be developed due to its possibilities for integration with other clients, such as an 

address book or a personal organiser.  Particular attention should be paid to making the design 

accessible to the widest range of people, including selecting the colours with the best contrast 

sensitivity, and providing both buttons and keyboard shortcuts. 



Chapter 2: Semistructure and Hyperstructure       -3- 

 

 

 

Chapter 2: Semistructure and Hyperstructure 

 

 

2.1. Overview of Semistructured Data 

 

 

A vast amount of data is available today, especially on the Internet.  This information can be 

structured in a multitude of different ways, ranging from relational databases to semistructured 

data to raw data, such as bitmaps or plain text.  There are many reasons why data may be 

semistructured.  The structure of the data could be irregular due to missing pieces of information, 

or due to data heterogeneity.  Structure may also only exist partially because some data is 

external, or parts of data themselves lack structure, such as images [22].  The field of 

semistructured data aimed to address concerns with the weaknesses perceived in the relational 

database concept, as well as the realistic view that virtually no real-world data fits into a regular 

structure.  The structure of data depends on a point of view.  This view of the world may change, 

or it may differ depending on the context in which it is being viewed. 

 

With semistructured data, the information that is normally associated with a database schema is 

contained within the data; this is termed “self-describing” [3].  This is convenient for 

conceptualising the World Wide Web, where data is varied and irregular and is in a constant state 

of flux.  The Web can be viewed as a type of database, but it is not constrained by any schema.  

The users of the Web could take advantage of database support, particularly with respect to 

querying [10].  

 

Semistructure is a flexible data format for data exchange between disparate databases, as even 

structured data can be considered a subset of semistructure.  It represents the “convergence of a 

number of lines of thinking and ways to represent and query data that does not fit with 

conventional data models” [3].  The discipline was motivated by the need to bring new forms of 



Chapter 2: Semistructure and Hyperstructure       -4- 

 

data into the ambit of conventional database technology, facilitating data exchange and 

transformation.  Clearly, a database system that could easily accommodate irregular data and 

changes in structure would “greatly facilitate the rapid integration of heterogeneous databases” 

[10]. 

 

It was believed that semistructured data can “most naturally be modelled as a collection of 

objects” and each object may have any number of (possibly repeated) attributes, whose values 

can be other objects or atomic data [22].  There were a number of proposed models for 

semistructured data, including labelled graphs with nodes and edges (although with no provision 

for transclusion), XML structures, etc.  Implementing a model for semistructured data required 

the rethinking of all aspects of information management systems, including “storage 

management, indexing, query processing and optimisation, and user interfaces” [10]. 

 

Representing data as a graph facilitates the discovery of new data to load into the structure, 

assists the integration of heterogeneous data and enables the structure to be easy to query without 

knowing the data type of the information.  However, there exists a vulnerability to losing type 

information and optimization can be affected, causing it to be harder or nearly impossible due to 

the way the graph is structured [10].  The OEM (Object Exchange Model) data model can be 

represented as a labelled graph, with all the schema information contained in labels.  One 

derivation of this model, LORE (Lightweight Object Repository) contains two types of objects: 

atomic units and collections of label-object pairs.  Its query language, LOREL, employs a 

powerful form of navigation that utilises path expressions to traverse the graph inside the 

database engine, allowing users to retrieve and update data easily where there is no fixed, known 

structure [10].  

 

LORE attempts to take advantage of structure where it exists, but also handles irregular data as 

gracefully as possible.  No restrictions are imposed on the size or structure of atomic or complex 

data objects to accommodate semistructured data at the physical level.  Additionally, the layout 

of objects on the disk has been customized to facilitate browsing and the processing of path 

expressions.  LORE includes DataGuides to replace schemas, these provide a snapshot of the 

structure of the data and guide query optimisation.  Furthermore, because one of the motivations 



Chapter 2: Semistructure and Hyperstructure       -5- 

 

for using a semistructured data management system is to integrate data effortlessly from 

heterogeneous information sources (including the World Wide Web); LORE includes an external 

data manager to bring in data dynamically from external sources as needed during query 

execution [10]. 

 

Although the accepted representational format of semistructured data is an XML tree structure, 

this has proven to be unwieldy due to the lack of mathematical basis in this field.  It is also 

virtually impossible to navigate and consequently hard to query.  Managing semistructured data 

with tree structures can cause imbalance, and it can be difficult to compare data due to the 

complexity of the structure [22].  As a result of these problems, very little research has been done 

in this field in recent years and work on its original systems, such as LORE [10], has almost been 

abandoned. 

 

 

 

2.2. Overview of ZigZag 

 

 

Consider the basics of computer science.  Data is represented by files with specific naming 

conventions.  These files are organised in a hierarchical directory structure in a window-based 

operating system.  Applications are used to access and modify files, and data can be transferred in 

a fashion between applications using the clipboard.  Why is this?  The computer is a mechanism 

by which we should be able to enact any world we choose.  Limitless possibilities, yet we are 

stuck with a system that was designed for the optimisation of secretarial work.  It should be about 

how we can get the effect we want with the resources that we have, not about recreating a paper 

based system [15].  

 

Although it was born from an idea of how the world could be enacted, ZigZag can be analysed in 

terms of relational databases and set theory, bringing it under the ambit of Dimensional 

Informatics [24].  This is a new area of computing that aims to address the problems with 

relational databases and serve as a highly generalised information model.  It also encompasses 



Chapter 2: Semistructure and Hyperstructure       -6- 

 

decomposed relational databases [5], Fenfire [25] and possibly the Semantic Web [34].  ZigZag 

can be considered to be a single structure that represents a conglomeration of several existing 

structures, such as relational databases, lists, spreadsheets, etc. 

 

The primary problem with databases is ‘null’ values.  Unknown quantities are incompatible with 

computers, because of their inability to make a decision as to how the ‘null’ should be processed; 

does the information not exist, or is it merely not available at the moment?  Relational databases 

are based on set theory, whose essence is the relation.  At the heart of the relational model is 

Codd’s Information Principle [4] that states that all information must be encoded as data values 

in relations.  Relations are facts about the world, either true or false, and having an unknown 

value violates this theory on which relational databases are founded.   

 

The following example illustrates a simple group of person relations, or records.  This example 

highlights the problems with ‘nulls’ perfectly, as there are people who do not have middle names.  

Writing each of these relations mathematically, one can begin to see the problem; for example, 

{2, Neil, ?, Carter} is wrong [Figure 2.1], one cannot claim a statement is true if part of it is 

unknown.  Several alternatives have been suggested, including having type ‘nulls’, but this will 

only lead further into a logical quandary.  The only solution is to use normalisation to eliminate 

the ‘null’ values, and split the database into smaller tables.  From there the structure can be 

normalised as far as possible, until full binary decomposition is achieved [Figure 2.2]. 

 

 

 

ID First name Middle name Surname 

1 Joanne Louise Carter 

2 Neil ?  (NULL) Carter 

3 Anne Elizabeth Clark 

 

 

Figure 2.1: A table representing a simple person relation. 



Chapter 2: Semistructure and Hyperstructure       -7- 

 

 

ID First name 

1 Joanne 

2 Neil 

3 Anne 

 

ID Middle name 

1 Louise 

3 Elizabeth 

 

 

ID Surname 

1 Carter 

2 Carter 

3 Clark 

 

 

Figure 2.2: Breakdown of the original table into a set of binary relations.   

Only the values that are known have been entered. 

 

 

 

There are now three relations with no unknown values, which could be queried using the JOIN 

operation.  Everything is now consistent with mathematical theory.  However, if queries were to 

be attempted with JOINs then a large quantity of processing power would be needed, especially 

with a large database, and the computer would grind to a halt.  This is where ZigZag has the 

advantage as it makes use of binary relations; field names equating to ZigZag dimensions, which 

are decomposed and pre-joined in an orthogonal representation.  Pivot cells, often represented by 

a primary or surrogate key, act as a central point to the entity.  These cells are, by definition, 

multidimensional in nature and therefore visualisation is also far neater when represented via a 

graph [Figure 2.3]. 

 

 

 

 

 

 

 

 

 



Chapter 2: Semistructure and Hyperstructure       -8- 

 

 

 

 

Figure 2.3: An illustration of how each binary relation can be represented as a graph, with nodes and edges.   

These can naturally be pre-joined to show three dimensions (or more). 

 

 

 

The underlying assumption is that information can only be represented by binary relations in the 

world, and this denotes one of the primary axioms upon which Dimensional Informatics is based.  

This assumption makes the structure infinitely more flexible as data is already split up and there 

exist no assumptions as to what information is known.  The flexibility of the structure also makes 

it more amenable to change.  If it were to become more complicated then one cannot guarantee 

possessing more information.  Being that one can never know that everything is known, this tries 

to represent the true nature of the world.  The nature of the world is particularly relevant to the 

normalisation of relational databases, because normalisation is subjective.  As illustrated, full 

binary decomposition is the result if a relational database is normalised entirely.  One usually has 

to judge how far to normalise, especially as the world can change so that information that was 

once normalised may not be in the future. 

 



Chapter 2: Semistructure and Hyperstructure       -9- 

 

The ZigZag structure can be represented as a tractable graph due to the rule that there may only 

be one posward and one negward connection to a cell (zzstructure) in any dimension [15].  This 

choice of 1-in-1-out makes it easy to navigate as one can always retrace the steps that have been 

made [9].  This is reminiscent of the information trails first proposed by Bush [7], the routes by 

which one finds information are as important as the information itself.  Cells can contain any one 

type of data (text, images, sound, etc). 

 

Dimensions are sets of information that can be related semantically or can be completely abstract.  

The standard syntax for a dimension is d.something, and three general dimensions are provided as 

standard, d.1, d.2 and d.3.  Together relations build up a dimension; for example, {Joanne, Neil, 

Anne} make up the name dimension (d.name), as they are related to each other.  One can also 

have transitive relations, such as d.parent, where information can be inferred from the ordering of 

the cells.  One can tune in and out of information with dimensions, like a radio.  The system is 

built out of itself, dimensions themselves are cells; this has often been termed as “turtles all the 

way down” [36]. 

 

The same cell can exist in different contexts through the use of transclusion [14].  The resultant 

clones have their own dimension, d.clone, where the other contexts in which the cell exists are 

visible.  If the information in one clone is changed, then the others will change to reflect it, as 

they are conceptually the same cell.  Clones inherit from the rank head if attributes are not 

specified [16].  The deletion of the head of a rank of clones causes the next clone in the rank to 

assume the properties of the head; this ensures that there are no disconnected cells.  This function 

will be particularly useful when dealing with the image organiser because, instead of there being 

multiple copies of the same image in different folders, images can be cloned.  This could save on 

storage space and eliminate the problem of different versions existing. 

 

The understanding of the Zigzag structure does depend to some extent on spatial awareness.  

Basically, ZigZag is a paradoxical space that leverages on familiar concepts such as the row, 

column, corner and wheel [16].  All views are legitimate and the structure can differ; its 

appearance depends on how it is presented to the user, or according to their preferences as to how 

it is to be displayed. 



Chapter 2: Semistructure and Hyperstructure       -10- 

 

 

2.3. Overview of Mantra – Set Processing Language 

 

 

It is important that a query language for such a structure be based upon set theory rather than 

SQL, to ensure that queries are performed quickly and efficiently.  Mantra [32] is a general 

processing language created, at the University of Nottingham [37], for use with Dimensional 

Informatics structures, and as such it is not limited to ZigZag; in this context however, as ZigZag 

can be viewed with regards to set theory, it will be used with zzstructures.  Furthermore, since the 

language is based on this mathematical theory, cells can be processed quickly and the structure 

can be traversed with ease.  It also has roots in hypertext, due to its specificity to binary relations, 

and as such, it may be viewed as a hypertext or database query language, which may serve as a 

unifying influence between the two fields in the future.  One of the original ZigZag 

implementations, gZZ [8], did not separate the structure of ZigZag from the presentation.  This 

was judged to be a cumbersome approach to the issue, and the idea of a server with many clients 

was brought into fruition. 

 

Zzstructures are uniquely identified through the use of a ZRI (ZigZag Resource Identifier), a cell 

address, which has since been re-named to simply NRI to maintain neutrality.  Each unique 

identifier is made up of the server ID, the slice ID on the server and the cell ID (which is unique 

within the slice).  Mantra is an SPL (Set Processing Language) used by clients to communicate 

with the Mantra server.  The processing language takes in, and returns, a ZigZag structure, which 

consists of a set (a list) of NRIs.  Query catenas consist of many statements connected together by 

the ‘|’ (pipe) symbol [Figure 2.4].  The resulting output set from each statement is passed on to 

the next statement as its input set; continuing until the final output set is reached. 

 

 

 

 

 

 



Chapter 2: Semistructure and Hyperstructure       -11- 

 

 

> 0.0.0 | fetch all along "d.main" | create + along "d.penguins" | change 

content = "hello" 

 

 

Figure 2.4: An example mantra query. 

Start with the first cell and get all the cells that exist in the main dimension.  Then create new cells in the 

posward direction of each of those cells, along the dimension d.penguins.  Change the content of all those cells 

to “hello”. 

 

 

 

The client sends the query as XML, using a specified set of Mantra tags and the server responds 

in the same way [Figure 2.5].   

 

 

 

<mantra> 

<query ID="0">0.0.0 | fetch all along "d.main" | create + along   

"d.penguins" | change content = "hello" 

</query> 

</mantra > 

 

<mantra version="0.1"> 

<response ID="0" total_usecs="491" processing_usecs="373"> 

<cell zri="0.0.10">d.main</cell> 

… 

</response> 

</mantra > 

 

 

Figure 2.5: A message from a ZigZag client to the Mantra server and its response. 



Chapter 2: Semistructure and Hyperstructure       -12- 

 

This standardised output of queries allows it to be produced and parsed (or interpreted) by all 

programming languages.  This use of XML contrasts with its original use with semistructured 

information, in models like LORE [10], as it is underpinned by mathematical theory; and as such 

is optimized for this particular purpose. 

 



Chapter 3: ZigZag Structure and the Mantra Server      -13- 

 

 

 

Chapter 3: ZigZag Structure and the Mantra Server 

 

 

3.1. ZigZag Structure 

 

 

Due to the novelty of this area of research there have been no formal specifications produced 

about how dimensions should be set up.  This can cause a great deal of confusion over what a 

dimension is, and can overcomplicate ZigZag structure.  A dimension can be considered a 

context of information, or a link between different units of information; a way of connecting 

related cells.   

 

With earlier forms of ZigZag like gZZ [8], there was a dimension called d.main.  However, it was 

very difficult to conceptualise what this dimension actually meant, and which cells it should 

contain.  This has been discarded with the Mantra server in favour of a system cell.  The system 

cell contains (i.e: is connected to along d.contains) the slices, types and dimensions that are 

needed in the structure [Figure 3.1]; and in addition, the home cell, contains the structure and the 

cells which relate to the different clients.  These cells are connected along d.set.  The cell which 

represents zzImage will be contained in the home cell; this will then contain the images, tags etc.  

The system cells will be hidden from the user, who will be restricted to the zzImage cells; except 

when information from other clients is needed (see discussion of Zones of Purpose in 3.2.11). 

 

 

 

 

 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -14- 

 

 

 

 

Figure 3.1: The ZigZag system cells 

 

 

 

These two dimensions, d.contains and d.set are the main dimensions in the structure [Figure 3.2], 

acting to create a hierarchical structure, which can be thought of in terms of folders.  The set 

replaces the idea of the wheel of cells, which has been used previously with ZigZag structures, as 

it represents more accurately the disordered nature of the cells.  The terminology ‘set’ is more in 

sync with ZigZag’s affinity with Set Theory (see previous discussion of Dimensional Informatics 

in 2.2).  

 

 

 

 

Figure 3.2: The current default dimensions (d.history is inactive) 

 



Chapter 3: ZigZag Structure and the Mantra Server      -15- 

 

The understanding of how the ZigZag structure works is hinged on one’s comprehension of 

dimensions.  Any misconceptions at that stage can cause complications further on, and this is 

why it is important to grasp them initially.  Once the concept of the dimension is understood, then 

the idea of ZigZag can come together. 

 

 

 

 

Figure 3.3: Example structure for zzImage. 

 

 

As illustrated [Figure 3.3], it is very easy to become confused about how to organise the cells.  

This can result in an unwieldy ZigZag structure, excessive cloning and poor use of resources.  

This also introduces multiple redundant dimensions, which are poorly optimised for use in any 

situation.  A consistent approach is needed, which can be used by multiple clients.  This can also 

provide a basis for any ZigZag structure.  The dimensions d.contains and d.set are part of this 

solution.  The proposed structure for zzImage [Figure 3.4] makes use of a new dimension, 

d.ordered, which is discussed later (see discussion of d.ordered in 3.2.4). 



Chapter 3: ZigZag Structure and the Mantra Server      -16- 

 

 

 

 

Figure 3.4: Revised structure for zzImage, incorporating d.set, d.contains and d.ordered 

 

The arrows indicate the ‘posward’ direction.  The dotted grey squares and symbols indicate where cells have 

been duplicated temporarily to facilitate the demonstration of the structure 

 

 

 

This revised structure aims to make the most efficient use of transclusion.  Clones must be used 

because ZigZag cells can only have one ‘posward’, and one ‘negward’ connection along any 

dimension; i.e: cells can only belong to one set at a time, if one wants to connect a cell to a 

different set then cloning must be considered.  This is because connecting a cell to another cell 

along d.set would sever any previous connections the cell had along a different d.set. 

 

Once the structure has been mapped out, it can be created on the Mantra server [Figure 3.5]. 



Chapter 3: ZigZag Structure and the Mantra Server      -17- 

 

 

 

Figure 3.5: The structure from Figure 3.4 represented via the MantraF client 

1: The cell types; 2: zzImage home cell and images; 3: zzImage’s extra dimensions; 4: Folders with cloned 

images; 5: Image type; and 6: Image tags.  Not represented here are examples of d.name and d.caption. 



Chapter 3: ZigZag Structure and the Mantra Server      -18- 

 

 

3.2. The Mantra Server 

 

 

3.2.1. Introduction 

 

 

“The Mantra Set Processing Language is designed for the client-server communication of 

databases that use Dimensional Informatics (DI) rather than the relational model of information 

structure (such as ZigZag).”  Currently the only implementation is the MantraD server, which is 

under development in the University of Nottingham School of Computer Science and 

Information Technology [1]. 

 

Owing to the fact that the Mantra server is still in the initial stages (version 1.0), no more than the 

basic commands have been implemented so far.  These work well to illustrate the basic principles 

of Mantra; however, there are some shortcomings and problems, which are discussed in later 

sections.  Additionally, there are several supplementary ideas and commands that should be taken 

into consideration. 

 

 

3.2.2. Current Commands 

 

 

Only the basic commands have been implemented so far.  These are illustrated in Figure 3.6. 

 

 

 

 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -19- 

 

 

save slice <number> 

reset system 

<cell_set> | fetch [all/this to prev/next to tail/head/-1 to -3/etc] along 

"d.something" 

<cell_set> | create [+/-] along "d.something" 

<cell_set> | change content = <string> 

<cell_set> | delete 

<cell_set> | insert [+/-] <target_cell> along "d.something" 

<cell_set> | sever [+/] along "d.something" 

gather [dims/types] 

resolve [all/content/mode/created] 

 

Figure 3.6: The current Mantra query commands 

 

 

3.2.3. Cloning 

 

 

The current process of cloning in Mantra is rather cumbersome, involving the creation of a new 

cell along the appropriate dimension, which is then connected to the original cell along d.clone 

[Figure 3.7].   

 

 

> 0.0.34 | create + along "d.set" | insert + 0.0.6 along "d.clone" | 

resolve 

 

Figure 3.7: Example of current method of cloning using Mantra 

 

This example creates a new cell after cell 34 along d.set; this empty cell is then inserted after cell 6 along 

d.clone.  The new cell is now a clone of cell 6 



Chapter 3: ZigZag Structure and the Mantra Server      -20- 

 

Mantra correctly interprets these cells as clones, which means that if the content of one cell is 

changed the other cells will reflect that change.  Additionally, resolve mode correctly returns 

‘clone’ rather than normal.  It seems that any cell that is inserted along d.clone has its mode 

changed to ‘clone’.   

 

This process could be improved greatly by adding a simple clone command [Figure 3.8], which 

would provide an easy method of creating clones and reduce the number of potential errors. 

 

 

 

> 0.0.34 | clone 0.0.6 + along "d.set" | resolve all 

 

Figure 3.8: Example of the proposed ‘clone’ command 

 

 

 

Clones should retain their type, i.e: take the type from the head cell of the rank; moreover, one 

should be able to follow the other dimensional connections, if the option to do so is turned on.  

However, currently with Mantra no inheritance for clones has yet been instigated. 

 

 

3.2.4. Ordering Cells 

 

 

Although the new dimensions d.set and d.contains provide a good framework for ZigZag, d.set is 

unordered.  Cells are added without regard to whether they should hold a particular position 

along the dimension, with the premise that all the cells are connected to each other, and to the 

main cell along d.contains.  If one needed to have cells in a specific order, then these would need 

to be fetched, ordered manually and then added to another dimension in order; additionally, this 

would have to be repeated every time a new cell was added.   



Chapter 3: ZigZag Structure and the Mantra Server      -21- 

 

Mantra is in need of another default dimension called d.ordered along which cells can be ordered 

alphanumerically; this would also involve the development of an additional command, order, to 

turn a complicated client-side process into a simple Mantra command [Figure 3.9].  Cells could 

then be connected in any order along one dimension, d.set; and then connected in alphanumeric 

order along another dimension, d.ordered.  This could be extended to order + or order – 

depending on whether ascending or descending ordering was required. 

 

 

 

> 0.0.34 | fetch all along "d.set" | order along "d.ordered" | resolve 

 

Figure 3.9: Example of the proposed ‘order’ command 

 

 

 

Naturally, when one begins talking about ordering, there are several things that must be clarified.  

Firstly, how does one determine order?  Is it merely alphanumerical, numbers then letters?  If so, 

where does punctuation come in?  What about capital and lowercase letters?  Alternatively, is 

there a need to consider lexical and linguistic implications?  For instance, in Lithuanian, the letter 

‘y’ comes between the letters ‘i’ and ‘k’; and in Swedish the letters ‘v’ and ‘w’ are the same 

thing.  There are rules and libraries for Unicode string sorting, but that only makes sense if the 

language of a particular cell is known [2].  This should not be a problem; however, there does 

seem to be a need for a mechanism to determine the language of any cell (see discussion of Types 

in 3.2.5). 

 

A language's writing system will determine what influences the sort order of the language.  For 

example, a sort order for Russian would be based on Cyrillic letters and possibly diacritics, but a 

sort order for Japanese might be based on the number of strokes it takes to draw a character.  

Linguistic sort orders are different from the Unicode code point order.  A sorting element (such 

as a character) can be the combination of more than one Unicode code point.  For example, 



Chapter 3: ZigZag Structure and the Mantra Server      -22- 

 

U+0B95 + U+0BCD + U+0BB7 = Tamil Ksha, which is a single sorting element in Tamil [2].  

Additionally, languages that use the same script often have different linguistic sort orders.  With 

regards to linguistic comparisons it could become quite difficult and would possibly be too 

complicated for this command; and thus if needed should be considered client-side.   

 

 

3.2.5. Typing 

 

 

Currently, if a type is assigned to a cell then the appropriate type’s cell has to be cloned and 

connected to the new cell along d.type [Figure 3.10].  This is a long-winded process, which needs 

to be simplified.  This is especially pertinent because the current method does not really give a 

cell a type, so type-specific operations are made more complicated. 

 

 

 

> 0.0.40 | create + along "d.set" | change content = "hello.png" | create  

+ along "d.type" | insert + 0.0.38 along "d.clone" 

 

Figure 3.10: Example of the current method of typing, the creation of a t.image cell 

 

 

 

There are a multitude of ways that this could be accomplished; however, to be consistent with the 

current commands (such as change content = ""), something like change type = 

"t.image" would be appropriate; or possibly as an extension of create; for example, create 

+ along "d.set" type = "t.image".  When this command was executed, the server would 

need to check whether the specific type existed and either, error if it did not or default to the 

‘raw’ type.   

 



Chapter 3: ZigZag Structure and the Mantra Server      -23- 

 

Types could be created through a create type command, and if a type does not exist then an 

error would be returned.  Furthermore, the create command could also be extended to create 

dim, and perhaps even create slice.  This would help to ensure that cells are created with 

ease, and that excessive cloning is minimised; furthermore, this would limit the number of cells 

that are created that should not be normal cells (i.e: dimension cells, type cells, etc.).  The modes 

of a cell could possibly be expanded here, to give the choice of normal, clone, dim, type or slice. 

 

The addition of this command would necessitate the expansion of the resolve command to 

include cell types (resolve type).  The type could then be retrieved as an XML attribute 

[Figure 3.11]. 

 

 

 

<cell nri="0.0.40" type="t.image"/> 

 

Figure 3.11: Example of XML response from Mantra server after ‘resolve type’ 

 

 

 

It would be preferable to return the type as text rather then a cell identifier, owing to the fact that 

the system cells may change so that a table of reference could not be constructed easily.  In 

addition, it is more useful to have the type returned as text because the text is more likely to be 

desired by the client.  If the cell identifier of the type were needed, then it would be easier to 

retrieve it as required.  Alternatively, one may be able to retrieve the cell identifier automatically 

with a command like t.image | resolve, thus keeping it server-side and providing another 

Mantra standard.  However, regarding that command, it does seem to make more sense to be 

consistent with current paradigms, returning a cell identifier and using 0.0.9 | resolve to get 

the type’s name instead. 

 



Chapter 3: ZigZag Structure and the Mantra Server      -24- 

 

As was mentioned previously, types could play a large role in ordering cells (see discussion of 

Ordering in 3.2.4).  The t.text type could be sub-typed to include different languages (i.e: 

t.fr_text, t.gb_text), which would effect how the content of the cell was dealt with by the order 

command; and also by any other commands that may need to compare cell content.  Types are 

also very important with regards to cell content (see discussion on Cell Content in 3.2.6), as the 

type of a cell can affect how Mantra deals with it, and how it is displayed in a client.  For 

example, if a cell was used to store a music file, then if the file were dealt with as text then it 

would be unreadable to humans; however, add a t.music type, and the program knows that it is a 

music file (this could also be sub-typed to deal with different music formats, such as t.mp3, 

t.wma, etc). 

 

 

3.2.6. Cell Content 

 

 

In its present format the Mantra server only allows cells to contain text data.  This is obviously 

limiting due to the vast amount of data that could be stored in a cell; from images and files, to 

whole films; acting in a similar manner to blobs in databases.  For example; the zzImage client is 

limited to a cell containing a physical address for the file (which was in turn limited previously 

by the inability of cells to contain more than basic punctuation, so that characters such as ‘:’ and 

‘/’ would cause an error; this has since been resolved).   

 

With the proper introduction of typing and the expansion of possibility for cell content, then a 

cell could contain an actual image file.  This would obviously eliminate the possibility of a file 

not being found, due to it being moved or deleted, as the files would be stored on the server itself; 

furthermore, it would assist the Mantra server in becoming a self-contained system. 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -25- 

 

3.2.7. Type Specific Commands 

 

 

An expanded implementation of types, and cell content, opens up the possibility of type specific 

commands.  This is one thing which could be very useful depending on the type of client.  For 

example, the image organiser could use a create image command, which would add a cell to 

‘Images’ which is of type t.image, and could contain an actual image (or the data that makes up 

an image).  These sorts of type specific commands could simplify and reduce the length of 

queries. 

 

One other possibility is having commands contained in cells.  This could be used for commands 

that are typed frequently, such as fetch all along specific dimensions.  Envisaged are two 

possible syntaxes, either execute 0.0.35 or 0.0.194 | execute 0.0.35.  The first is 

proposed for a command where one does not need a starting cell or where the starting cell is 

always the same, and therefore can be included in the command; i.e: gather dims, or perhaps 

create image.  The second would act on the starting cell or cells provided before the execute 

command.  Once execute was called the Mantra server would be able to retrieve the Mantra 

query syntax from the cell specified and execute it.  Commands would have to be created in a 

different way to an ordinary cell to ensure that they were of correct syntax; perhaps through 

create command. 

 

 

3.2.8. Filtering 

 

 

At the present time any filtering of cells must be conducted client side; this includes searching for 

cells with specific content.  A server-side filter command is needed to reduce the number of 

elements in a set by filtering them through a conditional statement (i.e: = =, !=, <, >, etc).  This 

filtering may potentially be extended from covering purely cell content, to properties and 

attributes [Figure 3.12]. 



Chapter 3: ZigZag Structure and the Mantra Server      -26- 

 

 

> 0.0.34 | fetch all along "d.set" | filter content < 10 | filter d.tags = 

"stickies" 

 

Figure 3.12: Example of the ‘filter’ command 

 

 

 

However, the same considerations that applied to ordering must be applied also to these 

conditions, with relation to linguistic and lexical comparisons (see discussion on Ordering in 

3.2.4).  Additionally, in order to filter properly along dimensions such as d.tags (including d.set), 

then the ambit of dimensions need to be extended (see discussion of Dimensions in 3.2.9). 

 

 

3.2.9. Dimensions 

 

 

Dimensions are ways in which connections between different pieces of information can be 

represented.  One can use dimensions to interpret these relations; however, what may be evident 

about a connection to the human eye, is not to a computer.  For example, in d.ordered it can be 

said that one item of data falls before (or after) another item of data; from that one can infer that 

an item of data three cells up also falls before that item of data [Figure 3.13].  A computer cannot 

deduce this about a dimension without further information about it; the computer is limited to 

what it knows about the ‘posward’ and ‘negward’ connections.   

 

 

 

 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -27- 

 

 

{1, 2, 3, 4} 

(1, 2)  (2, 3)  (3, 4)  

(1, 3)  (2, 4)  (1, 4)  

 

Figure 3.13: An example of a transitive set (ordered) 

 

We can say 1 is less than 2 etc; and can infer 1 is less than 3, etc, because it is a transitive set.  If it was also 

reflexive (less than or equal to) then we can say 1 is less than or equal to 1, etc. 

 

 

 

There are many of these types of relations, taken from Set Theory [35], which could aid a 

computer in interpreting dimensions.  These would have to be represented as attributes of a 

dimension [Figure 3.14], and the server could refer to a dimension’s attributes to see how cells 

should be interpreted within a relation.  Adding attributes to a dimension also allows concepts 

such as multiple names, limits to content, etc. 

 

 

 

 

 

Figure 3.14: A diagram of a dim designator showing its relevant properties 



Chapter 3: ZigZag Structure and the Mantra Server      -28- 

 

Furthermore, if dimensional attributes were implemented then it could have welcome impact on 

the relationship between d.contains and d.set.  One is able to infer that, because cell 2 is 

connected to cell 1 along d.contains and cell 3 along d.set, cell 3 is also connected to cell 1 along 

d.contains.  However, with the current set-up a computer cannot deduce this, so a query must 

combine several commands to get all the cells contained in a set [Figure 3.15].  There could be 

just one command like fetch all +1 along "d.contains", or perhaps fetch all along 

"d.contains", "d.set". 

 

 

 

> 0.0.33 | fetch +1 along "d.contains" | fetch all along "d.set" | resolve 

 

Figure 3.15: The current Mantra query required to fetch all the cells in a set 

 

If 0.0.33 is the cell for ‘Images’, then this command fetches the first image along d.contains and then all the 

other images from there along d.set. 

 

 

 

This would also be extremely useful to use to preserve the head cell of a set of cells.  Currently 

with Mantra if a cell is deleted from the centre of a set the set ‘heals’ itself and dimensional links 

are preserved.  However, if the head cell of a set, the one connected along d.contains, is deleted 

the rest of the set is orphaned; this is contrary to the theory of ZigZag [16].  Using dimensional 

attributes it may be possible to preserve the head cell of a rank by passing the d.contains link to 

the next cell down.  Even if this was not possible, it should be implemented in some way server-

side. 

 

One problem that has been experienced with dimensions, which relates to a previous discussion 

on cell content (see 3.2.6), is that although dimension cells can be created with any character, 

they can then only be referred to by their NRI if they do [Figure 3.16].  The name of a dimension 

should only be able to contain letters [Figure 3.17] and the underscore (_) character, in addition 



Chapter 3: ZigZag Structure and the Mantra Server      -29- 

 

to the ‘d.’; however, the current version of Mantra does not recognise dimension names that 

contain an underscore [Figure 3.18], and this can cause problems when NRIs are not standard to a 

dimension. 

 

 

 

0.0.6 -> d.%^&* 

0.0.56 | fetch all along 0.0.6 

 

 

Figure 3.16: Dimensions created with non-standard characters can only be referred to by their cell NRI 

 

 

 

0.0.7 -> d.contains 

0.0.56 | fetch all along 0.0.7 OR 0.0.56 | fetch all along "d.contains"  

 

 

Figure 3.17: Dimensions created with alphabetical characters can be referred to by name or NRI 

 

 

 

0.0.8 -> d.author_name 

0.0.56 | fetch all along 0.0.8 OR 0.0.56 | fetch all along "d.author_name" 

 

 

Figure 3.18: Dimensions created with alphabetical characters and the underscore should be able to be 

referred to by both name and NRI 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -30- 

 

3.2.10. History 

 

 

One of the previous forms of ZigZag, gZZ [8], had a default dimension called d.history.  This 

dimension contained every cell created in the order they were created, which meant that if a cell’s 

only other dimensional connection was severed then the cell could also be accessed along this 

dimension.  This has not yet been implemented on the Mantra server, and currently one must add 

every cell manually to d.history if it is needed; however, once in place it could prove useful. 

 

In relation to this dimension, several new commands could be developed.  For example, 

retrieve last, which could return the last cell added.  This command would be especially 

useful if the cell had been created and its dimensional connections severed accidentally.  It could 

also be expanded to include the last x cells, the last dimension created, the last type, etc. 

 

 

3.2.11. Zones of Purpose 

 

 

When developing a client for use with the Mantra server it is important to think about what 

structure is needed.  The systems cells should be hidden from the regular user, and only the 

‘Home’ cell with the relevant client-specific cells would be viewable.  Nevertheless, one of the 

main ideas behind ZigZag was to eliminate the “application prison” [12]; with this in mind, 

interaction between clients is important.  Each client has a cell in home, from that cell they can 

create their structure; this is termed a “Zone of Purpose” (ZOP) [13].   

 

However, there may be dimensional relationships between ZOPs; for example, an image 

organiser may contain photos of people, these photos could contain links along d.people to their 

names, and from that point tie in to an address book which contained their contact details, etc.  

Another connection could be between the dates the photos were taken, and a diary or organiser 

client, so links could be formed to events that occurred on a particular day.  This type of structure 



Chapter 3: ZigZag Structure and the Mantra Server      -31- 

 

ensures that there is no redundancy, and that files and pieces of information can be shared 

between “applitudes” [13] without any problems, creating a wholly interlinked system. 

 

 

3.2.12. Slices 

 

 

A slice is a pseudo-grouping of cells existing on a server [15], where each cell lives in one slice 

and one only.  To the user the slices may even be invisible, such as the system cells.  Slices have 

been devised mainly with the purpose of memory management, but are part of where the cell 

currently exists.  A cell on the Mantra server is identified by the server ID, the slice ID and the 

cell ID, giving it an address; i.e: 0.0.23 is cell 23 on slice 0 of server 0 (server 0 is equivalent to 

localhost). 

 

Slices can be used to contain demonstrations of ZigZag structure, whereby to view the 

demonstration one merely has to load in the relevant slice.  Slices can also be used to separate the 

system cells, which could either not be edited or only available to add dimensions, types, etc 

through the create command.  Different clients will also be able to access their unique 

structures which exist on separate slices, or even over several slices.  Dimensional connections 

are even possible across slices, allowing connectivity between information usually accessed by 

different clients; though it is important to save both slices at the same time to ensure they stay 

synchronised. 

 

Slices have not yet been fully implemented on the Mantra server, and the existing set-up means 

that slices must be saved after each create or insert command to ensure that data is not lost 

[Figure 3.19], which can become tedious. 

 

 

 

 



Chapter 3: ZigZag Structure and the Mantra Server      -32- 

 

 

> 0.0.36 | fetch +1 along "d.contains" | fetch tail along "d.set" | create 

+ along "d.set" | change content = "2005" | save slice 0 | resolve 

 

Figure 3.19: Slices must be saved to ensure that recently created cells are not lost. 

 

 

 

Slices could be saved automatically, and this would function effectively at the moment whilst the 

server is only acting on one slice.  However, this would introduce problems once multiple slices 

were involved, meaning that the client would possibly have to save manually after each query.  

The client should be able to specify the slice it was working on; especially if cells were needed to 

be kept on separate slices, or demonstration slices were being created.  On the other hand, if one 

were working with a structure that spanned several slices, then automatic saving of those slices 

would be useful to ensure they stayed synchronised. 

 

There are potentially other problems related to the multiplicity of slices, including the 

synchronisation aspect of interaction between slices.  If dimensional links are allowed across 

slices, then measures must be taken to ensure that they are preserved.  If one slice were to be 

corrupted, or simply loaded out of memory, then relationships between cells would be lost and 

the integrity of the structure compromised.  It certainly needs a great deal more consideration 

before it could be fully implemented. 

 

 



Chapter 4: Design          -33- 

 

 

 

Chapter 4: Design 

 

 

4.1. Introduction 

 

 

With the advent of affordable digital cameras, people are storing a plethora of digital photos and 

other images on their home computers.  These images are most commonly organised into some 

kind of hierarchical directory structure, though this in itself in not ideal due to the fact that many 

images tend to fall under more than one category. 

 

There are currently numerous good photo management programs available, such as iPhoto for the 

Mac [29] and Picasa for Windows [33].  These implement various ways to organise images, 

including tags, virtual folders, calendar views etc.  Additionally, they also have developed into 

image editors, offering options such as reducing red-eye, cropping and changing the image 

contrast.  There are several features that can be implemented ideally by ZigZag through an image 

organiser client, or through linking to other ZigZag clients: 

 

 

* Views – due to ZigZag’s immense flexibility, the creation of new views and the customization 

of the interface should be straightforward.  Users will merely have to change the dimensions 

being displayed to get a whole new view, and there should be provision to save customized 

views.  The default starting position will be the home cell, which should contain a set of menu-

like cells that state what information is contained within the client, e.g: Images, Tags, Folders, 

and Dates etc.  These cells will then contain a set of images, tags, etc depending on their contents. 

 

There should also be the provision to change easily the display of the client, such as switching 

between a flat view with thumbnails view that is reminiscent of a Windows environment 



Chapter 4: Design          -34- 

 

organiser, a slideshow, or a ZigZag cell type environment.  Tabs could also provide further 

functionality, allowing users to navigate with ease between the various categories. 

 

 

* Timeline – with the use of a ZigZag dimension (e.g: d.ordered), it would be simple to organise 

all the images in the order they were created or modified.  This could also be subject to 

customisation by the user, who should be able to create a custom timeline according to dates they 

enter for images rather than those stored by the computer. 

 

 

* Calendar – images could also be grouped and viewed by date in a calendar dimension.  

Additionally, this could be used with an ordered dimension within a particular date to illustrate 

the progression of time. 

 

 

* Tags – through the use of transclusion, tags can be used to group the images in several different 

virtual ‘folders’.  A search algorithm could also be implemented here.  There are limitless 

possibilities for views here as well: tabbed, virtual folders, ZigZag cells, etc. 

 

 

* Collections – collections of images can easily be created, without having to create new tags.  

These collections could represent relationships between images, or merely be used to group 

images together.  Collections could also be used in collaboration with groups (mentioned below), 

or be created simply to group images together temporarily for a particular purpose. 

 

 

* EXIF (Exchangeable Image File) data – information about the images can be stored 

alongside them; including author, copyright, rating, captions etc.  This can also be used to sort 

images in different dimensions.  Furthermore, EXIF data should be able to be stored with the 

image so that, in the event of images being transferred to a computer that does not use the ZigZag 



Chapter 4: Design          -35- 

 

framework, the information about the file will be preserved.  EXIF data should be able to be 

viewed and edited easily in both a flat form view, or in a ZigZag set. 

 

 

* Emailing images – the image organiser client can link with an email client to send images via 

email.  This emphasises the facility in which data can be exchanged between ZigZag applitudes. 

 

 

* People – the client should also be able to link to an address book or personal organiser client, 

connecting the people in the images with their contact information.  This should begin to 

eliminate the need for information to be duplicated due to incompatibility between applications, 

and inevitably free up disk storage space.   

 

Dimensions (such as d.person) could be used to display the image, linking to the names and 

contact details of the people in the image, and additionally displaying further images that also 

contain those people.  Groups of people could also be created if multitudes of images contain the 

same people, or if a particular group repeats over a number of images. 

 

 

 

4.2. Flash 

 

 

“In a world where most digital experiences fall flat, the Macromedia Flash Platform offers 

something different.  It is a lightweight, cross-platform runtime that can be used not just for rich 

media, but also for enterprise applications, communications, and mobile applications.  No matter 

how it is used, we designed the Flash Platform so that organizations of all kinds can deliver the 

most effective experiences imagination will allow.”  [26] 

 

Similar to Java, Macromedia Flash [26] is a dynamic streaming technology that allows 

animations, interactive forms, games and other features to be embedded in web pages, or it can be 



Chapter 4: Design          -36- 

 

used as a stand-alone application.  It is a bandwidth friendly and browser independent vector-

graphic animation technology; and as long as different browsers are equipped with the necessary 

plug-ins, Flash animations will look the same.  Macromedia Flash Player is a well known and 

trustworthy plug-in that users should feel comfortable installing; it is freely available to download 

and is compatible with any system. 

 

Flash was chosen to create the prototype because it is cross-platform compatible, and also usable 

on the internet.  Additionally, it is possible to create a user-friendly interface without an 

enormous amount of coding, leaving the designer free to concentrate on connectivity and 

features.  Flash MX with Flash Player 6 has also introduced some new accessibility features 

which make Flash movies accessible to screen readers, such as JAWS [30], and Window-Eyes 

[39].  The beauty of creating the interface in Flash is that the Flash Player can be maximised, 

which allows for the increase in size of the buttons and fonts.   

 

 

 

4.3. Colour 

 

 

When considering the design of the interface, particular attention was paid to the needs of people 

with disabilities such as colour-deficiency and partial sight.  A questionnaire was devised to elicit 

preferred colour combinations of text and background, and font type and size, the full results of 

which can be found in Appendix C (see 4.7 for a discussion of the Questionnaire). 

 

One must ensure that there is a clear contrast between the colour of the text and the colour of the 

background.  It was found that the preferred colour combination for people with normal vision 

(using corrective spectacles if necessary) is black text on a white background.  However, for 

those with vision problems, a white background can cause too much glare which reduces the 

visibility of the text.  By using a pale coloured background such as grey or light blue, this reduces 

the glare and increases the contrast [Appendix C].   

 



Chapter 4: Design          -37- 

 

Additionally, large light coloured text on a dark background also provides good contrast; 

however, this is a less desirable colour combination for normal sighted people.  To enable people 

with all levels of visual ability to use the interface comfortably, a pale background was chosen 

along with bold black text.  To provide a selection depending on colour preferences, alternative 

versions of the client have been produced in different colours; and in future versions there are 

plans to add an option to select a custom background and text colour.  This would add more 

versatility to the design and increase accessibility. 

 

Negative contrast (dark text on a light background) provides a higher contrast sensitivity than 

positive contrast (light text on a dark background); this is because of certain asymmetries in the 

visual processing system; and additionally, the tendency of white letters to bleed into the dark 

background (this is called irradiation) [23 – Ch4].  In addition to the combination of colours, 

there are many other factors which can affect contrast sensitivity (CS); these include: 

illumination, spatial frequency (the width of light separating two dark lines), the resolution of the 

eye itself (level of vision), or movement (which is not applicable in this case) [Figure 4.1]. 

 

 

 

Variable Effect Example 

Reduced contrast Reduced visibility Black print on grey 

Reduced 

illumination 
Reduced contrast sensitivity 

Reading a map in poor 

conditions 

Polarity Black on white better than white on black Designing viewgraphs 

Spatial frequency 

Optimum CS at 3 C/D (cycles/degrees - 

the number of light/dark pairs in 1 degree 

of visual angle) 

Ideal size of text font 

given viewing distance 

Visual 

accommodation 
CS 

Map reading during night 

driving 

 

Figure 4.1: Some variables that affect contrast and visibility. 



Chapter 4: Design          -38- 

 

 

4.4. Colour Deficiency 

 

 

There are several types of colour deficiency (also called Daltonism), which can affect different 

people in varying degrees [Figure 4.2].  There are four main types; three that affect the primary 

wavelengths of light: red, green and blue, and total colour blindness (achromatic). 

 

 

 

Condition Proportion (%) 

  Male Female 

Protanopia Red-blind 1.0 0.01 

Protanomaly Red-weak 1.0 0.03 

Deuteranopia Green-blind 1.0 0.01 

Deuteranomaly Green-weak 5.0 0.35 

Tritanopia Blue-blind Very small Very small 

Tritanomaly Blue-weak Very small Very small 

Achromatopsia Total Minute Minute 

 

 

Figure 4.2: Occurrence of colour vision deficiencies in the UK 

 

The UK has one of the highest proportions of colour-blind people, along with Central Europe and Central 

North America [11 - page 38]. 

 

 

 



Chapter 4: Design          -39- 

 

Colour deficiency genes are located on the X chromosome, which means that males are more 

likely to be affected by it and females are more likely to be carriers [Figure 4.3]; it can also be 

brought on by age, or as the result of an accident or illness.  In fact, 5% of the population have an 

acquired defect as serious as the 8% with a congenital defect [11 - page 55].   

 

 

 

X Y Males (observed)  (%) 

R G  Normal  92 

R* G  Red-deficient  2 

R G*  Green-deficient  6 

 

 

X X Females (calculated)  (%) 

RG RG Normal Non-carrier 84.7 

RG R*G Normal Red-deficiency carrier 3.7 

RG RG* Normal Green-deficiency carrier 11 

R* G R* G Red-deficient Red-deficiency carrier 0.04 

R G* R G* Green-deficient Green-deficiency carrier 0.36 

R* G R G* Normal (red-weak poss) Red & green-deficiency carrier 0.24 

 

Figure 4.3: Possible gene distribution on 23
rd
 chromosome 

 

8% of males carry a deficient gene, as do 16% of females.  There is a 50% chance of a son of a woman carrier 

being colour-blind, and 100% if she carries both defective genes (with a 50/50 chance of either colour).  The 

colour-weak gene is dominant over the colour-blind gene; but is itself dominated by the normal gene [11 - 

page 49]. 

 

 

 



Chapter 4: Design          -40- 

 

With colour deficiency, or the milder form of colour weakness, there is a lack or displacement of 

one of the three colour receptor mechanisms, which causes an inability to see certain colours; and 

confusion between colours arises.  This means that colours that would usually be thought of as 

contrasting with each other can actually look the same.  This can cause problems in everyday life, 

such as distinguishing traffic and taillights when driving; and can also affect people in industry 

and the forces, hence restricting the range of occupations available to those with colour problems 

[11 - Ch 7]. 

 

This has a serious impact on design considerations, so it is important that the colours used on the 

user interface have enough contrast at any wavelength.  There are several programs available that 

can simulate an interface as seen by a person with a colour deficiency.  A variety of colours have 

been selected to illustrate the differences, these can be seen in [Figure 4.4].  The twenty-seven 

normal colours have been produced by all combinations of 0, 50 and 100% levels of red, green 

and blue primaries.  They have then been transformed to show their appearance to colour-blind 

users [11 - page 213].   

 

The diagram shows that the safest colours to use are black, white and grey; this is why these were 

selected as the initial colours for the interface.  The light blue colour is seen as a pinkish shade by 

those with a red or green colour deficiency; however, it still retains sufficient contrast with black 

to justify its viability as a background colour. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Design          -41- 

 

 

 

 

 

Figure 4.4: Websafe selection (Normal – Red-blind – Green-blind – Blue-blind) 

 

 

 

 

 

 



Chapter 4: Design          -42- 

 

 

4.5. Fonts and Buttons 

 

 

The font Verdana at a size of 12 points has been used in the interface as the questionnaire showed 

it to be the preferred font of the majority of those with normal vision and partial sight.  The 

questionnaire also indicated that the interface should be coded to include key shortcuts for all 

buttons.  This ensures that persons with motor control problems have no issues clicking smaller 

buttons.  Having key shortcuts also enables those with screen readers to activate buttons without 

many problems.   

 

Key shortcuts were originally coded with multiple keys (e.g: Ctrl + 7) [28]; however when the 

listeners were added they did not function as expected, perhaps due to incompatibility between 

Flash MX and Flash MX 2004; and time constraints did not allow more extensive testing.  As a 

consequence, the listeners were removed and the simple one key press shortcut was kept.  This 

did mean that shortcut keys could not be added to the ‘Add Image’ page due to the fact that this 

interfered with typing in the image information.  However, with more research into the key 

listeners, they should be able to be suitably modified for use in future versions.  The key shortcuts 

are detailed in the Help file supplied with zzImage, which is accessible via the ‘Help’ button; and 

additionally, in the User Manual [Appendix A]. 

 

 

 

4.6. Accessibility 

 

 

As mentioned previously (see discussion of Flash in 4.2) the most recent versions of Flash and 

the Flash Player have included more functions to increase the accessibility of Flash movies.  

Using this feature, alongside sensible coding and limited use of animated buttons, the interface 

can be made available to the widest range of users.  While it is quite popular to include motion in 

movies as part of transitions and loading sequences, it is important that these animations settle to 



Chapter 4: Design          -43- 

 

a static screen once the page loads.  For people with learning disabilities, motion on the screen 

can be distracting and might even make other elements unreadable [27].  Additionally, content 

that continuously loops can confuse screen readers into thinking that new content is available and 

they keep returning to that section of the page.  Keyboard shortcuts make buttons more accessible 

and larger buttons mean that the target area for the mouse point is larger. 

 

Furthermore, the Web Accessibility site recommends the following measures should be taken 

[38]: 

 

Hearing disabilities  

- Provide synchronized captions for any audio that conveys content  

Photo epilepsy  

- Remove strobing content that flashes between 2 and 55 times per second 

Motor disabilities  

- Ensure the Flash content is keyboard accessible  

- Do not require fine motor skills  

Cognitive disabilities  

- Give users control over time sensitive content  

- Provide easy to use controls and navigation schemes  

- Be consistent  

- Use the clearest, simplest language appropriate to the content 

Low vision  

- Provide plenty of contrast  

- Allow the Flash content to scale to a larger size 

Blindness  

- Ensure screen reader accessibility or provide an accessible alternative  

- Ensure keyboard accessibility  

- Do not interfere with screen reader audio or keyboard commands  

- Provide textual equivalents for all non-text elements that convey content or provide a 

function. 



Chapter 4: Design          -44- 

 

 

4.7. Questionnaire Design 

 

 

Questionnaires are a well-established means of collecting data or opinions.  A certain amount of 

skill is needed to make sure that the design of the questionnaire is such that the data collected is 

appropriate, and that it can be analysed effectively.  There has to be a balance between open and 

closed questions in order to elicit the relevant information. 

 

Online questionnaires are becoming increasingly common because they are effective in reaching 

a large audience quickly and easily [19 - Ch13].  Web based questionnaires can provide 

immediate data validation and can enforce various rules about questions such as, ‘select only one 

of the following’; this reduces the amount of time needed for data analysis.  One drawback of a 

web-based questionnaire is obtaining a random sample of respondents; though this is sometimes a 

willing compromise when a rapid response is needed. 

 

The questionnaire (which can be viewed in Appendix C), used to obtain data mainly about colour 

preferences and fonts, was posted online.  It was designed firstly on paper, and went through 

many revisions before being publicised.  An online journal site [31] was used to host the 

questionnaire, since it has a tool which enables questionnaires to be generated with a minimum of 

effort, and tallies the results of any closed questions automatically.  The only drawback with 

using this tool was that the questionnaire was limited to fifteen questions; however, this proved to 

be sufficient in this instance. 

 

The aim of the questionnaire was to elicit responses from a wide range of people with varying 

visual abilities.  The advantage of using the journaling site meant that the questionnaire could be 

advertised in the relevant communities so that a sufficient sample of answers could be obtained.  

Special attention was paid to attract those people with reduced vision, and those who had various 

colour problems; additionally, a sample of people with normal vision was obtained for 

comparison. 

 



Chapter 4: Design          -45- 

 

4.7.1. The Questions 

 

 

The questionnaire was designed to try and provide a balance between the need for data that 

would be quick to analyse, and the need for open answers that may cover eventualities that had 

not been anticipated.  Participants were encouraged to add any further data or explanations in the 

comment box provided, or via email.  Additional questions could have been added; however, it 

was decided that enough data could be gathered from the original questionnaire and there was no 

need for any supplementary questions. 

 

 

The design of the questions was such that the data obtained could be analysed quickly so that 

various conclusions could be drawn.  There were some instances where it was suggested that a 

question could have been formatted differently, such as allowing the respondents to choose more 

than one interface colour, or displaying the font in the actual typeface.  However, these were 

minor, and had been considered previously.   

 

The problem with allowing participants to select more than one interface meant that some might 

select them all, whereas the decision presented to them forced them to make a conscious choice 

between the designs.  Furthermore, the fonts were supposed to be displayed in the appropriate 

typeface; however, a problem with the questionnaire generator caused this formatting to be lost. 

 

 

4.7.2. The Results 

 

 

There were discussions regarding the opinion that the interface contained too many areas of focus 

with having the sidebar buttons split into two groups; however, this positioning was also 

deliberate as it is important to separate out areas of interest so the eye does not become crowded.  

It is essential to keep the view button where it is, due to the fact that the eye automatically starts 



Chapter 4: Design          -46- 

 

reading at the top left corner [19], and changing the view type would be one of the first actions a 

user would execute. 

 

Several people made comments with regards to the positioning of the buttons; they were of the 

opinion that the bottom row of navigation buttons should be relocated to the top left.  However, 

there was disagreement, and it was decided that the placement was deliberate as it groups the 

entire set of navigation buttons together out of the way.  They should not become the main focus 

of the eye, as they are secondary.  The main buttons are grouped in the bottom left, which do not 

immediately draw the eye, but they are placed logically as the screen is read from left to right. 

 

The results obtained from the questionnaire supported conclusions drawn previously, and sparked 

some new ideas which were incorporated into the design.  Although not everyone answered every 

question, a sufficient sample was obtained for analysis.  Additional analysis was performed on 

the answers of those with reduced vision; those registered as legally blind and those with colour 

problems.  These supplementary results also correlated with those of the whole, thus supporting 

the conclusions drawn. 



Chapter 5: Implementation and Evaluation       -47- 

 

 

 

Chapter 5: Implementation and Evaluation 

 

 

A full code listing and a User Manual can be found in Appendices D and A respectively. 

 

 

 

5.1. Connecting to the Mantra Server 

 

 

Code written for the MantraF client was adapted (with permission) from Flash MX 2004 to Flash 

MX for use with the zzImage client.  This enabled the client to make use of the query and query 

stack classes, which provided a quick and easy method of sending messages to, and receiving 

them from, the Mantra server by opening an XML socket [Figure 5.2].  Once messages are 

received then they can be executed by the function that requested the information.  The client 

connects to the server on a specified port, which identifies the user and links them to their pre-

defined structure [Figure 5.1].  There are currently no other security measures on the server, so 

users are separated only by the port they access. 

 

 

 

 

Figure 5.1: The client accesses the Mantra server on the specified port 



Chapter 5: Implementation and Evaluation       -48- 

 

 

function server_connect(ip, port)  

{ 

 xsock = new XMLSocket(); 

 xsock.onData = process_xml_message; 

 xsock.connect(ip, port); 

} 

 

 

Figure 5.2: The server_connect function 

 

The client sets up, and connects to, an XML socket, which will send received data to the specified function. 

 

 

 

When a message is sent by the client, the query stack stores the query ID alongside a function 

pointer to the function that will process the XML.  When the client receives a message from the 

server it searches through the query stack to find the corresponding query ID.  It then calls the 

linked function and sends the XML content to it; along with any extra parameters it may need 

[Figure 5.3].  By simply parsing the XML received from the server, the contents and addresses of 

cells can be extracted for display. 

 

 

 

function process_query_response(xml_doc)  

{ 

 var response_id = xml_doc.firstChild.firstChild.attributes.id; 

 var query_match = query_store.find_entry(response_id); 

 

 if (query_match == null)  

{ 

  trace("error: matching query for response cannot be found"); 



Chapter 5: Implementation and Evaluation       -49- 

 

 }  

else  

{ 

  query_store.remove_entry(response_id); 

  query_match.function_name(xml_doc, query_match.param); 

 } 

} 

 

 

Figure 5.3: The process_query_response function 

 

Once the previous function has checked that the message is a server response, then the response can be 

processed.  The function gets the response ID from the XML message.  It then searches through the query 

stack to find the matching query ID.  When the match has been found it removes the entry, and sends the 

XML document and any necessary parameters to the function which needs the data.  The function is stored as 

a function pointer, which is a link to the function so it can be sent with the appropriate parameters. 

 

 

 

5.2. The Slideshow 

 

 

The Normal View displays the images it receives as a slideshow.  When the client is connected to 

the server, then the images can be loaded by clicking the “Load Images” button.  When this 

occurs, the client contacts the server and asks it to retrieve all the cells it currently has connected 

to the ‘images’ cell [Figure 5.4].   

 

 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -50- 

 

 

 

function load_images() { 

var dim_query = '0.0.34 | fetch tail along "d.contains" | fetch all  

along "d.set" | resolve'; 

_root.submit_query(dim_query, createSlideshow); 

p = 0; 

} 

 

 

Figure 5.4: Fetch all images, and send the result to the createSlideshow function 

 

 

 

The addresses of the images are then retrieved from the XML and pushed into an array [Figure 

5.5].  This array is then stepped through and loaded into a movie clip in a slideshow format 

[Figure 5.6].  Users can step through the images using the arrow buttons, or using the left and 

right arrow keys on their keyboard.  A caption for the image is displayed underneath, alongside 

the position of the image in the array. 

 

 

 

function createSlideshow(xml_doc)  

{ 

 xmlNode = xml_doc.firstChild.firstChild.childNodes; 

 image = []; 

 address = []; 

 total = xmlNode.length; 

 for (var i = 0; i<total; i++)  

{ 

  image[i] = xmlNode[i].firstChild; 

  address[i] = xmlNode[i].attributes.nri; 

 } 



Chapter 5: Implementation and Evaluation       -51- 

 

 firstImage(); 

} 

 

Figure 5.5: The response from the server is sent to the createSlideshow function 

 

The addresses and contents of the cell are extracted and stored in an array.  The address can be used to gather 

the other information about the image needed for the sidebar, and also the caption. 

 

 

 

 

 

 

 

Figure 5.6: The images are loaded into the slideshow 

 

 

 

The only drawback with this method is that Flash does not support .png or .gif format, which 

means that only .jpg type images can be displayed.  Although the ‘Back’ and ‘Goto’ buttons have 

not been coded in this prototype, the ‘Home’ button returns the slideshow to the first image. 

 

One major problem that was experienced with the slideshow was asynchronous loading of the 

images, which resulted in a show-one skip-one type progression; the progression even occurred 



Chapter 5: Implementation and Evaluation       -52- 

 

when the ‘Home’ button was pressed, when the images were reloaded [Figure 5.7] and was 

mirrored by the thumbnail image.   

 

 

 

 

 

Figure 5.7: The show-one, skip-one progression pattern repeats infinitely 

 

URL indicates where an image is loading from an URL, and REL indicates where an image is loading from 

the computer where the client is located (the images are in the same folder). 

 

 

 

The problem was suspected to be related to the speed of the connection to the Mantra server.  

This was tested with both URLs and relative paths to images, and the results of this were 

inconclusive.  Any images using a relative path that were directly after the image loaded from an 

URL would load in the show-one skip-one pattern; however, within their own range they would 

all display, as would the next one from the URL [Figure 5.7].   

 

After extensive research it was discovered that this problem was caused by the fact that Flash was 

caching the images and there was a simple solution to prevent this from happening; the movie 

clip must be unloaded before a new image can be loaded in [Figure 5.8], and the same with the 

thumbnail clip.  The images now all display, without any problems. 

 



Chapter 5: Implementation and Evaluation       -53- 

 

 

unloadMovie(picture); 

loadMovie(image[p], picture); 

 

 

Figure 5.8: A simple solution to the show-one, skip-one problem 

 

 

 

 

5.3. The Sidebar 

 

 

The sidebar on both views displays a thumbnail version of the image that is currently selected or 

being rolled over (if an image is selected), including extra information about the images such as 

the tags, the name, etc [Figure 5.9].   

 

 

 

 

 

 

Figure 5.9: A thumbnail version of the image is displayed on the sidebar 



Chapter 5: Implementation and Evaluation       -54- 

 

It is propagated by the on_focus() function, which records the current cell’s NRI and executes 

the first query.  The queries and their respective functions are executed consecutively.  This can 

result in a slight time lag in the text being propagated to the respective text boxes, and this is 

somewhat noticeable if there is a slow connection between the client and the Mantra server.  The 

respective functions check whether each property of the image has been defined, and if not then it 

displays [not defined]. 

 

If there are no tags defined then the query which is sent to the server can end up returning the 

entire set of images instead of the set of tags.  To avoid the image addresses being output in the 

place of the tags, the set needs to be cycled through and the NRIs compared to the current 

image’s NRI.  If the NRI is in the set, then the tags have not yet been defined [Figure 5.10]. 

 

 

 

function showTags(xml_doc)  

{ 

 xmlNode5 = xml_doc.firstChild.firstChild.childNodes; 

 var no_tags = false; 

 var _total = xmlNode5.length; 

 

 for (var i = 0; i < _total; i++)  

{ 

  if (xmlNode5[i].attributes.nri == current_cell)  

{ 

   no_tags = true; 

  } 

 } 

 

 if (no_tags == true)  

{ 

  image_tags.text = "[no tags]"; 

 } 

 else  



Chapter 5: Implementation and Evaluation       -55- 

 

{ 

  var tags; 

  tags = xmlNode5[0].firstChild; 

  for (var i = 1; i < _total; i++)  

{ 

   tags = tags + ", " + xmlNode5[i].firstChild; 

  } 

  image_tags.text = tags; 

 } 

} 

 

 

Figure 5.10: The showTags function 

 

 

 

 

5.4. The ZigZag View 

 

 

The ZigZag View displays the ZigZag structure as a series of connected nodes.  This code has 

also been adapted (with permission) for Flash MX from the MantraF client.  Once connected to 

the server, the client queries it to obtain the cells, and then creates an instance of a graphic 

(node_container) to represent the cell [Figure 5.11].  The client constructs the ZigZag structure 

by querying the server for every related cell within six cells of the ‘Home’ cell.  If the specified 

range does not exist, then the function merely skips over it.   

 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -56- 

 

 

 

 

Figure 5.11: An instance of node_container 

 

 

 

 

 

update_nodes[i].mc = nodes_mc.attachMovie("node_container",  

"node_container_"+i,  

(30+i)); 

 

 

Figure 5.12: The code to attach the movie clip 

 

The code attaches the movie clips, gives it a unique name, and specifies the level into which it needs to be 

loaded. 

 

 

 

Once all the cells have been retrieved then the update() function constructs the cell movie clips, 

making sure that each one is loaded onto a different level [Figure 5.12], and displays them on the 

screen [Figure 5.13].  To prevent the cell positions having to be recalculated every time the 

interface changes, the cells are attached to another movie clip called nodes_mc; this is then the 

only thing which has to be repositioned.  The ‘Home’ button centres the structure back on the 



Chapter 5: Implementation and Evaluation       -57- 

 

zzImage home cell; this is very useful if one has become disoriented navigating through a 

complicated structure. 

 

 

 

 

 

 

Figure 5.13: The ZigZag view, after the cells have been loaded 

 

 

 

The cell’s addresses can be shown or hidden by clicking the ‘Show’ button [Figure 5.14]. 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -58- 

 

 

 

 

 

Figure 5.14: The cell addresses can be toggled on and off by the ‘Show/Hide’ button 

 

 

 

The dimension lists are pop-ups, which are created by using a movie clip; these play when an 

invisible button is clicked (or the shortcut key is pressed) [Figure 5.15].  The same button also 

closes the pop-up, or one can also use the close button.  The pop-up contains a list box that is 

propagated through the use of a useful Mantra query (gather dims).  A dimension can be 

selected, and when the pop-up is closed the selection is stored in a variable and displayed.   

 

 

 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -59- 

 

 

 

 

 

Figure 5.15: The dimension list pop-up 

 

 

 

A ‘Flip Dims’ button swaps the selected dimensions around.  This rotates the structure 90o and 

gives the user a different viewpoint; with complex structures in particular, this option can prove 

fortuitous. 

 

Some problems were experienced in the conversion of the code from Flash MX 2004 to Flash 

MX due to the fact that classes are declared in a different manner, which means that some code 

will need to be altered drastically.  Code that worked perfectly with Flash MX 2004 caused 

massive problems with Flash MX.  One of the initial problems was with loading the ZigZag cells, 

as only half of them were loading.  After extensive testing and debugging it was discovered that 

the problem was due to the splice(match, 1) command and that splicing the array caused 

only part of it to be processed, displaying only half of the cells.  Once this line of code was 

removed the problem was solved. 

  



Chapter 5: Implementation and Evaluation       -60- 

 

One major problem experienced was the difference between MX and MX 2004 classes.  MX 

2004 uses Java like classes declared through the class command, containing the various 

functions; these classes can then be instantiated.  MX requires one to create a function with the 

name of the class, then create prototype functions, which are then attached to the ‘class’ function.  

This means that all variables that are needed in that class need to be assigned inside the ‘class’ 

function; even if they are not passed to the constructor [Figure 5.16]. 

 

 

 

function mantra_node(_nri,  

_content,  

_target_xpos,  

_target_ypos,  

_target_height,  

_target_width)  

{ 

 this.nri = _nri; 

 this.content = _content; 

 this.target_xpos = _target_xpos; 

 this.target_ypos = _target_ypos; 

 this.target_height = _target_height; 

 this.target_width = _target_width; 

 this.mc = new MovieClip; 

 this.current_xpos = 0; 

 this.current_ypos = 0; 

 this.current_height = 0; 

 this.current_width = 0; 

} 

 

 

Figure 5.16: The mantra_node class in Flash MX 

 

 



Chapter 5: Implementation and Evaluation       -61- 

 

A disappointing drawback of the conversion of the code from Flash MX 2004 to Flash MX was 

that the cell sensors ceased to function.  The sensor was designed to detect when a cell was 

clicked and to redraw the layout in order to centre on that cell.  With further testing it should be 

possible to include this functionality in subsequent versions. 

 

 

 

5.5. Adding an Image 

 

 

The ‘Add Image’ screen follows the same format as the other screens.  The user has the option of 

entering a location for the image, giving it a name and a caption [Figure 5.17].   

 

 

 

 

 

 

Figure 5.17: The ‘Add Image’ page 



Chapter 5: Implementation and Evaluation       -62- 

 

There is a choice of saving the image directly, going back to the previous screen (either the 

ZigZag or the Normal view, depending on where the user started) without saving, or previewing 

the image.   

 

The preview loads a thumbnail version of the image in the sidebar, and displays the name and 

caption on either end.  The quality of the thumbnail is mediocre at best, due to the fact that the 

movie clip displays it at a quarter of the original size; however, it provides enough of a view of 

the image for the user to check that the image is correct.  If the path is incorrect, then the image 

will not load [Figure 5.18] and it will enable the user to re-enter a correct address without adding 

incorrect data to the cell.  Potentially in the next version there should be an error message 

displayed if the image cannot be located.  This ability to preview reduces the amount of 

inaccurate data being added, and reduces the amount of queries being sent to the server.  The aim 

of this is to reduce user stress, and repetitive re-entry, therefore increasing user satisfaction. 

 

 

 

> Error opening URL  

file:///G|/University/MSc%20IT/Dissertation/Image%20Viewer/test.JPG 

 

 

Figure 5.18: Error shown in debugging console 

This error occurs when an image that does not exist is attempted to be previewed. 

 

 

The user is given visual feedback, in the form of a greyed out ‘Saved’ button, to show that an 

image has been saved successfully. 

 

The user will also have the chance, in future releases, to add tags to the image and put the image 

in virtual folders from this page.  As these functions require the use of the clone command, 

which has not yet been fully implemented and currently requires a lengthy query, they are 

planned for the next version.  It is envisaged that the user will only be able to add existing tags 



Chapter 5: Implementation and Evaluation       -63- 

 

and folders to an image, and a supplementary screen will be provided to add new tags and 

folders; this functionality is planned for forthcoming versions.   

 

 

 

5.6. Changes made during implementation 

 

 

Not all features were implemented in the prototype, due to the fact that the Mantra server is in the 

early stages.  This means that all the necessary commands have not yet been executed server-

side; and also some commands are more complicated than necessary (see 3.2 for discussion of 

Mantra).  In addition, some changes have been made to the initial design as it was created in 

Flash.  The tabbed interface of the Normal View was impractical to implement and was therefore 

replaced with a pop-up menu choice (currently unavailable); which made it more consistent with 

the design of the ZigZag View.   

 

The original idea of a thumbnail view was modified to become a thumbnail of the picture on the 

sidebar, and a slideshow of images.  In future versions it may be preferable to add thumbnails to 

the navigation as the number of images increases.  The addition of tags and virtual folders, and 

the navigation through them, has not been implemented due to lack of suitable commands. 

 

The storage of EXIF information with the image has not been included in this prototype because 

the cells just contain a link to the image rather than the image itself.  Once ZigZag cells are able 

to contain images then the EXIF information will be obtained, which means that less data 

concerning the image will need to be entered. 

 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -64- 

 

 

5.7. Testing 

 

 

A testing plan was devised to test the speed of various functions.  The trace() function was 

used to output the milliseconds of the current time, and these times were compared to obtain an 

average ‘loading’ time for each function.  The speed test was conducted several times to get an 

average result.  The speed tests were conducted over Broadband (ADSL) at a speed of 1.1 Mbps 

between the hours of 11:00pm and 11:30pm.  Please note that speeds may vary depending on 

connection and server traffic. 

 

The ensuing test plan was followed, obtaining reassuring results [Figure 5.19]. 

 

 

- Connect to server by clicking the ‘Connect’ button 

- Click the ‘Load Cells’ button – took an average of 192 milliseconds to construct and 

display the cells, including parsing the XML (16 cells displayed). 

- Click the ‘Flip Dims’ button – took an average of 115 milliseconds to construct and display 

the cells, including parsing the XML (4 cells displayed). 

- Click on the up dim and choose “d.contains” from the Dimensions pop-up – took an 

average of 104 milliseconds from sending the query to the Dimensions being populated in 

the list box.  It then took an average of 120 milliseconds to construct and display the cells, 

including parsing the XML (16 cells displayed). 

- Disconnect from server by clicking the ‘Disconnect’ button 

 

- Switch to Normal View by clicking on the ‘ZigZag View’ button 

- Connect to server by clicking the ‘Connect’ button 

- Click the ‘Load Images’ button – it took an average of 57 milliseconds to obtain and parse 

the XML ready for displaying in the slideshow.  It then took a further 212 milliseconds (on 



Chapter 5: Implementation and Evaluation       -65- 

 

average) to obtain and display the cell information on the sidebar – it has been noted that 

this procedure can seem to take a while if there is a slow connection. 

- Click the ‘Next’ arrow button, or hit the right arrow key – it took an average of 198 

milliseconds to display the information in the sidebar, including the caption under the 

image. 

- Click the ‘Add Image’ button 

- Enter image details 

- Click the ‘Preview’ button – it took less than 1 millisecond to display the preview. 

- Click the ‘Save Image’ button – it took an average of 266 milliseconds to save the image 

and the other details entered. 

- Click the ‘Back’ button 

- Disconnect from server by clicking the ‘Disconnect’ button 

 

 

Figure 5.19: Test plan and results 

 

 

 

Continuous testing and debugging were conducted throughout the lifespan of the prototype to 

ensure that all problems were detected and corrected as soon as they occurred, in order to prevent 

conflicts between areas of the code.  Code was added in small sections and each component was 

tested on its own before being added to the entire program.  Each time a new component was 

added the program was assessed to verify that no conflicts had arisen.  Throughout the testing 

various bugs were discovered, which have been discussed previously, and the majority of these 

were able to be rectified. 

 

 

 

 

 



Chapter 5: Implementation and Evaluation       -66- 

 

 

5.8. Conclusions 

 

 

The idea behind hyperstructure is that the user, rather than the application developer, should be in 

charge of how their data is organised.  Computers should help us with organizing our lives, rather 

than making them more difficult.  Hyperstructure, in particular ZigZag, allows us to structure our 

systems around the things that we care about and to express the relationships between them.  

Hyperstructure can be of particular use in the organisation of multimedia, such as images.  This 

type of data is very amenable to interpretation, and there is no simple way to define the 

connections between different pieces of information as relationships between items of data can 

overlap.   

 

The expectations of users and their reliance on technology have grown faster than the quality of 

user-interfaces, leading to much frustration on the part of the user [21].  Some of this frustration 

stems from the fact that the needs of the user differ from the needs of the designer.  In particular, 

the contrasting need of the designer to show off their skills and their abilities in new technologies, 

as opposed to giving consideration to the dissatisfaction that the user experiences when faced 

with learning how to use yet another new complex product that still does not have all the 

functionality that they would wish for. 

 

The objective is to help the user to understand better the relationships between the items in their 

lives and to provide them with the information that they need, in the right contexts, rather than 

having to open a different application or search for a file.  The aim is to help them to organise 

their ideas and thoughts, and to structure everything else in their computer around them.  The 

system should be based on our knowledge of those things that are inherent to the way our minds 

and bodies work, and on the interaction between humans and their artefacts; starting with a model 

of how we work as opposed to a model of how machines work. 

 

Based on the idea of ZigZag [14] with foundations in Dimensional Informatics [24], the Mantra 

server [32] allows the developer to implement hyperstructure in such a way that they can offer a 



Chapter 5: Implementation and Evaluation       -67- 

 

variety of different views to a user to display their information.  Through the use of applitude 

clients that connect to the server, information can be shared between “zones of purpose” [13], not 

confined to an “application prison” [12].  Moreover, duplication of data items will become 

redundant with the use of transclusion. 

 



References           -68- 

 

 

 

References 

 

 

[1] Brailsford, T.J.  “The Mantra Bible”.  University of Nottingham, August 2005.   

[Restricted distribution, available via: http://www.cs.nott.ac.uk/~tjb/mantra-docs/mantra.html, 

distribution policy at: http://www.cs.nott.ac.uk/~tjb/mantra-docs.html]. 

 

[2] Brailsford, T.J. and Goulding, J.O. (Personal communication).  “ZQL 0.0.2 - A new discussion 

of concepts”.  January 2005.  Available in the www.hypertexture.com Developer’s forum at: 

http://avexa128.valuehost.co.uk/ZZ/forum/viewtopic.php?t=81 [Restricted access, see above for 

details]. 

 

[3] Buneman, P.  “Tutorial: Semistructured data”.  Proceeding of ACM Symposium of Principles 

of Database Systems, 117-121 ACM, New York 1997 

 

[4] Codd, E. F.  “Extending the relational database model to capture more meaning”.  ACM 

Trans on Database Systems, 4, 4, 394-397 ACM 1979 

 

[5] Connolly, T. and Begg, C.  “Database Systems: A Practical Approach to Design, 

Implementation and Management”.  Addison-Wesley 2005 

 

[6] Fallenstein B. and Lukka T.J.  “Hyperstructure: Computers built around things that you care 

about”.  2004.  Available via: http://fenfire.org/manuscripts/2004/hyperstructure/ 

 

[7] Hughes.  “Dust or Magic: Secrets of a Successful Multimedia Design”.  Addison-Wesley 

2000 

 



References           -69- 

 

[8] Lukka, T.J. and Ervast, K.  “GZigZag – a Platform for Cybertext Experiments”.  In: 

CyberText Yearbook 2000, Eds Eskelinen, M and Koskimaa, R. Eastgate Systems, MA 2000. 

Available via: http://gzigzag.sourceforge.net/ct/ct.html 

 

[9] McGuffin, M. and Schraefel, M.  “A Comparison of Hyperstructures: Zzstructures, mSpaces 

and Polyarchies”.  Proceedings of ACM Conference on Hypertext and Hypermedia, 153-162 

ACM 2004. 

 

[10] McHugh, J., Abiteboul, S., Goldman, R., Quass, D. and Widom, J.  “Lore: A Database 

Management System for Semistructured Data”.  SIGMOD Record, 26, 3, September 1997 

 

[11] McIntyre D.  “Colour Blindness: Causes and Effects”.  Dalton Publishing 2002 

 

[12] Moore, A. and Brailsford, T.  “Unified Hyperstructures for Bioinformatics: Escaping the 

Application Prison”.  Journal of Digital Information, 5, 1, Article 254, May 2004.   

Also available via, http://jodi.ecs.soton.ac.uk/Articles/v05/i01/Moore/ 

 

[13] Moore, A., Goulding, J., Brailsford, T. and Ashman, A.  “Practical Applitudes: Case Studies 

of Applications of the ZigZag Hypermedia System”.  Proceedings of ACM Conference on 

Hypertext and Hypermedia, ACM 2004 

 

[14] Nelson, T.H.  “ZigZag Tutorial”.  1999.  

Available via: http://www.xanadu.net/zigzag/tutorial/ZZwelcome.html 

 

[15] Nelson, T.H.  “Cosmology for a different computer universe: data model, mechanisms, 

virtual machine and visualisation infrastructure".  Journal of Digital Information, 5, 1, Article 

298, July 2004 

 

[16] Nelson, T.H. (Personal communication).  “ZigZag, Floating World and transclusion”.  Talk 

held at the University of Nottingham, on 14th July 2005. 

 



References           -70- 

 

[17] Norman, D.  “The Design of Everyday Things”.  Basic 2002 

 

[18] Norman, D.  “Emotional Design: Why We Love (Or Hate) Everyday Things”.  Basic 2004 

 

[19] Preece, J., Rogers, Y., and Sharp, H.  “Interaction Design: Beyond Human-Computer 

Interaction”, Wiley & Sons 2002. 

 

[20] Raskin, J.  “The Humane Interface: New Directions for Designing Interactive Systems”.  

Addison Wesley 2000 

 

[21] Shneiderman, B.  “Designing the User Interface: Strategies for Effective Human-Computer 

Interaction”.  Addison Wesley 2004 

 

[22] Suciu, D.  “Management of Semistructured Data”.  SIGMOD Record, 26, 4 December 1997 

 

[23] Wickens, C.D., Lee, J.D., Liu, Y. and Becker, S.E.G.  “An Introduction to Human Factors 

Engineering”.  2nd Edition, Pearson Education Ltd. 2004. 

 

[24] “Dimensional Informatics”, Wikipedia, (this page has since been deleted - please see 

http://www.hypertexture.com for more information),  

http://en.wikipedia.org/wiki/Dimensional_informatics 

 

[25] Fenfire Project Homepage, http://savannah.nongnu.org/projects/fenfire/ 

 

[26] Flash (Macromedia), http://www.macromedia.com/platform/ 

 

[27] Flash (Macromedia), “Accessibility and Macromedia Flash MX 2004 Animation”, available 

from: http://www.macromedia.com/macromedia/accessibility/features/flash/animation.html 

 

[28] Flash MX 2004 (Macromedia) LiveDocs, “Specifying advanced accessibility options for 

screen readers”, available from: 



References           -71- 

 

http://livedocs.macromedia.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/common/html/wwhe

lp.htm?context=Flash_MX_2004&file=00000565.html 

 

[29] iPhoto 5, Apple Mac, http://www.apple.com/ilife/iphoto/ 

 

[30] JAWS Screen Reader, http://www.hj.com/fs_products/software_jaws.asp 

 

[31] LiveJournal, http://www.livejournal.com/ 

 

[32] Mantra discussions on Hypertexture web forums.   

Available via: http://www.hypertexture.com, open community forums currently hosted at:  

http://avexa128.valuehost.co.uk/ZZ/forum/viewforum.php?f=1 

 

[33] Picasa 2, Google, http://picasa.google.com/index.html 

 

[34] “The Semantic Web”, W3C, http://www.w3.org/2001/sw/Activity 

 

[35] “Set Theory”, Wikipedia, (September 2005), http://en.wikipedia.org/wiki/Binary_relation 

 

[36] “Turtles all the way down”, Wikipedia, (September 2005),  

http://en.wikipedia.org/wiki/Turtles_all_the_way_down 

 

[37] University of Nottingham, Web Technologies Research Group,  

http://www.cs.nott.ac.uk/Research/wtg/ 

 

[38] WebAIM (Web Accessibility in Mind), “Creating Accessible Macromedia Flash Content”, 

October 2004.  Available from: http://www.webaim.org/techniques/flash/ 

 

[39] Window-Eyes Screen Reader, http://www.gwmicro.com/ 

 

NB: All websites were accessed on September 13th 2005 to ensure that content had not changed. 



Appendix A: User Manual   -72- 

 

 

Appendix A: User Manual 

 

zzImage - the ZigZag/Mantra Image Organiser 

A Quick Introduction 

 

 

A.1. Keyboard Shortcuts 

 

The following keyboard shortcuts can be used in zzImage. 

NB: Please note that keyboard shortcuts are not enabled on the 'Add Image' page at this time. 

 

'C' -> Connect to/Disconnect from the server 

'L' -> Load the cells/images 

'A' -> Add an image 

'H' -> Return to the home cell/first image 

'V' -> Switch between views 

'P' -> Load the Help file 

 

A.1.1. ZigZag view commands: 

 

'F' -> Flip the Dimensions 

'S' -> Show/Hide cell addresses 

'1' -> Show/Hide the Up Dimension pop-up 

'2' -> Show/Hide the Across Dimension pop-up 

 

 



Appendix A: User Manual   -73- 

A.1.2. Normal view commands: 

 

Left/Right -> Navigate through the images 

 

If you have any problems, suggestions or questions then please email me: jxc04m@cs.nott.ac.uk. 

 

 

A.2. Loading the Image Organiser 

 

Double click on the zzImage file to start the image organiser.  Once the Splash screen (pictured 

below) has loaded, you can click anywhere on it to continue. 

 

  

 

 

A.3. Connecting to the Server 

 

Once the screen has loaded you can either click the ‘Connect’ button to 

connect to the Mantra Server, or you can switch between views. 

NB: You need to be connected to the server to proceed any further. 



Appendix A: User Manual   -74- 

 

A.4. The ZigZag View 

 

The images can be loaded as ZigZag cells by clicking on the ‘Load Cells’ button. 

 

  

 

 

 

You can show or hide the cell’s addresses by 

clicking on the envelope button ‘Show/Hide’. 

 

You can also flip the dimensions to view the 

structure in a different way. 

 

 

 

 



Appendix A: User Manual   -75- 

You may also select different dimensions by opening the Dimension pop-up.  You can do this 

either by clicking on the name of the dimension, or by the keyboard shortcut. 

 

   

 

Once you have chosen a dimension you can confirm your choice by clicking on the close button 

(X), the dimension name, or by using the keyboard shortcut.  The cells will then be redrawn to 

match your selection. 

 

 

 

A.5. The Normal View 

 

If you want to view your images in a different way, you can switch to the Normal View.  You do 

this by clicking on the top left button (or by using the keyboard shortcut), this toggles between 

views. 

 

 



Appendix A: User Manual   -76- 

With the Normal View you can load your images into a slideshow by clicking on the ‘Load 

Images’ button. 

 

  

 

You can navigate through your images by using the arrow buttons or the arrow keys on your 

keyboard.  If at any point you wish to return to the first image, you can do this by clicking on 

‘Home’. 

 

 

 

A.6. Adding Images 

 

Images can be added from either view, once you are connected to the server, by clicking on the 

‘Add Image’ button.  On this screen you can enter some of the details of your image.   

 



Appendix A: User Manual   -77- 

 

 

You then can preview the image to check that you have the address correct, if it is correct then a 

thumbnail of your image will appear on the sidebar.  Once you have confirmed all the details, you 

can ‘Save’ the image.  You can go back to the view you were on at any point by clicking ‘Back’.  

Please note that your image will not be saved if you do this. 

 

  

 

Once your image has been saved, the saved button will grey out and display the text ‘Saved!’.  

You can then go back to your previous view and re-load the images or cells.  You will then be 

able to see the image you just added. 



Appendix B: The CD   -78- 

 

 

Appendix B: The CD 

 

 

B.1. Files on the CD 

 

B.1.1. Code files 

 

zzImagev1.4.fla  

zzImagev1.4b.fla 

 

B.1.2. Flash Player files 

 

zzImagev1.4.swf 

zzImagev1.4b.swf (blue version) 

 

B.1.3. Windows Projector files 

 

zzImagev1.4.exe 

zzImagev1.4b.exe 

 

B.1.4. Other files 

 

Image files for demonstration 

Readme file 

PDF User Manual 

PDF version of Dissertation with Appendices 



Appendix B: The CD   -79- 

 

5.9. System Requirements 

 

 

Flash Player 6+, or a Flash-enabled Internet Browser 

 



Appendix C: The Questionnaire   -80- 

 

 

 

Appendix C: Vision Questionnaire – zzImage 

 

 

I am developing an image organiser client (you can see the interface I designed below) for my 

dissertation, which will connect to a “database” type server that is being researched at my 

university (This is not being designed for use on the Internet at this time).  I am conscious of 

vision related issues that could apply to my interface design and wish to get the opinions of a 

wide range of people with relation to these issues. 

 

The client is to be developed in Flash (because that was the easiest method of doing a prototype 

for me.  The other options would have been C++ or Java.), and will be viewed via Macromedia’s 

Flash Player.  This does mean that it can be maximised to increase font size, etc.  What I am 

interested in gathering would be the optimal colours, fonts and font sizes to use to accommodate 

the widest audience.  In future versions, it could be expanded to include personal preferences, 

which would further help.  Please also feel free to add any further comments via this entry, or 

email me. 

 

Thank you very much for your time, it is most appreciated. 

 

Note: All results will be kept anonymous, and no names will be mentioned in my write-up.  

Please try and answer all questions as honestly as possible. 

 

 

Question 1: I have read and understood the above information and am willing to help 

 

105 people answered the questionnaire 

 

 

 



Appendix C: The Questionnaire   -81- 

 

Question 2: How would you describe your vision? 

 

Normal - 19 

Normal with corrective spectacles – 57 

Slightly reduced vision – 18 

Low vision - 8 

Partially sighted - 2 

Blind - 1 

 

 

Question 3: Which eye(s) does this affect? 

 

Left eye only - 0 

Left eye predominantly - 15 

Right eye only - 1 

Right eye predominantly - 15 

Both eyes equally - 68 

 

 

Question 4: Are you registered as legally blind? 

 

Yes - 6 

No - 91 

 

 

Question 5: Do you have any colour vision problems? 

 

No - 98 

Yes, red colour-weak 

Yes, red colour-blind 

Yes, green colour-weak 



Appendix C: The Questionnaire   -82- 

 

Yes, green colour-blind 

Yes, blue colour-weak - 1 

Yes, blue colour-blind 

Yes, total colour-blind - 2 

Yes, but I don’t know which type - 3 

 

 

Question 6: Which colour combinations do you find make surfing the internet and using 

applications easier?  Please indicate which colour is the text (t) and which colour is the 

background (b). 

 

No preference - 3 

 

Black on white - 54 

Dark on light - 21 

Black on light grey - 5 

White on black - 20 

Light on dark - 7 

Black on purple - 4 

Black on light - 4 

Blue on white - 1 

Bright on black - 1 

Light on black - 2 

Dark on white - 2 

White on dark - 5 

Red on black - 1 

Black on blue - 3 

Black on cream - 2 

 

Number of people answered - 96 

 

 

Comments: 

 

ADG357-- (t) - Dark colour, preferably | (b) a lighter, contrasting colour.  I rather, however, see a 

nicely designed/formatted/cleaned page with ugly colours than just an ugly page. 

JMP582-- I find bright colours to draw my eyes, but not to be easy to read.  Thus, bright colours 

work best for diagrams or illustrations.  For text and background, I prefer moderate colours with 

very strong contrast.  I do not have specific colour preferences. 

CFK948 -- Black text on white background, or white text on black background.  However, 

anything that is nicely contrasting works as well.  Bright colours (canary yellow, cyan, etc.) do 

not work. 



Appendix C: The Questionnaire   -83- 

 

OJS474 -- I like it kept simple.  I prefer plain black and white combinations, but it is 

interchangeable between text and background.  In truth, colour is not as important to me as the 

light-to-dark contrast being clear. 

ITD422 -- It is not particular colours that make it easier - it is the amount of contrast between text 

and background - high contrast is generally easier to read 

 

 

Question 7: Which colour combinations do you find make surfing the internet and using 

applications more difficult?  Please indicate which colour is the text (t) and which colour is 

the background (b). 

 

No preference - 1 

 

Light on bright - 2 

Red on black - 10 

Dark on dark - 14 

Light on light - 15 

Bright on bright - 19 

Light on dark - 5 

White on black - 9 

Light on white - 4 

Purple on pink - 2 

Red on blue - 8 

Bright on white - 10 

Yellow on red - 3 

Bright on black - 3 

Red on green - 4 

Red on yellow - 4 

Blue on yellow - 2 

Black on white - 2 

Bright on light - 2 

White on dark - 2 

Red on white - 2 

Dark on bright - 2 

 

Number of people answered - 95 

 

 

Comments:  

 

JMP369 -- Bright yellows or greens (b); dark background with small, low contrast text, especially 

red (t) on black (b) 

JMP471 -- Yellow and Red, Blue and Green...generally any light/light or dark/dark combination 

SVY159 -- White background, any bright colours, and similar colours together (like dark blue 

text on a light blue background). 



Appendix C: The Questionnaire   -84- 

 

SVY372 -- White background is the worst.  Black background is usually bad as any text that is 

clear enough to see is usually a bit burning. 

SVY483 -- Pure white (b) give me headaches.  Pure black (b) can also be problematic when 

paired with the wrong text colours.  Yellow (t) on white (b).  Bright green (t or b) and red (t or b), 

and any other t/b colour combinations that cause the text to "blink" when viewed. 

SVY837 -- Any combination of green and yellow, blue and purple or anything else next to one 

another on the colour wheel. 

BEH567 -- Black (b), white (t).  I have a great deal of trouble with black or dark backgrounds on 

websites and applications and usually use the Firefox web developer toolbar to switch off colours 

if I come across a dark website. 

CFK159 -- Usually anything lighter than black text makes it hard 

LQU231 -- Grey.  I have a hard time with Grey (B) / Black or White (T).  I also have a hard time 

with bright backgrounds - i.e. orange or yellow 

NRW789 -- Anything that is across the colour palette from each other.  (i.e: red and blue, green 

and orange) 

OTX654 -- Black backgrounds and most any colour of text makes it difficult for me; it seems like 

the text seems to "swim". 

ZIQ975 -- If both the t and b are around the same light level (both dark colours, and both light 

colours) and also if the t and b are the same colour but different shades. 

OJS474 -- Any colours other than black and white when involving text can be difficult, mostly 

because not enough people know how to make the contrast strong or clear enough.  So black and 

white is a simple default to stick to. 

UON287 -- Medium hues are harder to distinguish.  Picture backgrounds are evil. 

ANT184 -- Any non-contrasting colours.  The one I see most often is blue/purple on blue/purple. 

 

 

 

 

 



Appendix C: The Questionnaire   -85- 

 

Question 8: Which is your preferred colour combination when you have the option to 

customise an interface/page as you wish?  Please indicate which colour is the text (t) and 

which colour is the background (b). 

 

No preference - 1 

 

Black on yellow - 1 

Black on pale blue - 7 

Black on white - 39 

White on dark - 5 

White on black - 19 

Black on purple - 5 

Cream on brown - 1 

Dark on light - 14 

Black on light - 6 

Green on black - 3 

Light on dark - 6 

White on bright - 1 

Black on pink - 2 

Green on white - 3 

Light on black - 4 

Blue on white - 2 

Black on green - 1 

Yellow on dark blue - 1 

Bright on black - 1 

Pink on brown - 1 

 

Number of people answered - 98 

 

 

Comments:  

 

JMP582 -- I like muted purples, greens, and cream colours for backgrounds, with text either 

black, white, or a very dark colour to create contrast. 

SVY372 -- I have had good luck with soft blues, greens, and reds as background with dark text 

on top of them. 

MSC099 -- Backgrounds- light soft colours - e.g: cream, green; text- strong contrast - dark brown 

BEH567 -- White (b), black (t).  Really, though, I choose those colours only because they require 

the least thought.  Another, more aesthetically pleasing combination would probably be even 

better, but my main priority is not to give myself a headache from reading. 

 

 

 

 

 



Appendix C: The Questionnaire   -86- 

 

Partially sighted people: 

 

No preference - 1 

 

Black on white - 8 

Dark on light - 4 

Black on purple - 1 

White on black - 6 

Light on black - 1 

Black on light - 2 

White on dark - 1 

Pink on brown - 1 

Light on dark - 3 

Black on pink - 1 

Green on white - 1 

 

Legally blind people: 

 

Black on white - 3 

Dark on light - 1 

White on black - 2 

 

Colour blind people: 

 

Dark on light - 1 

White on black - 1 

Light on black - 1 

Black on white - 1 

 

 

 

 

 

 

 

 

Question 9: Please choose from the fonts listed below, which you find to be the easiest to 

read or which you prefer.  (Apologies if any of these are not available on the Mac – I only 

have a PC). 

 

- Verdana - 39 

- Arial - 27 

- Times New Roman - 10 

- Courier New - 1 

- Tahoma - 9 

- Comic Sans MS - 16 

 

 

 

 

 



Appendix C: The Questionnaire   -87- 

 

Partially sighted: 

 

Verdana - 14 

Arial - 6 

Times New Roman - 2 

Courier New - 0 

Tahoma - 1 

Comic Sans MS - 5 

 

Legally blind people: 

 

Verdana – 10 

Arial - 4 

Times New Roman – 0 

Courier New - 0 

Tahoma - 0 

Comic Sans MS - 1 

 

Colour blind people: 

 

Verdana – 1 

Arial - 4 

Times New Roman - 0 

Courier New - 0 

Tahoma - 0 

Comic Sans MS - 0 

 

Question 10: At what font size?  (The font used in the interfaces below for the buttons and 

text labels is size 12 Verdana.) 

 

Size 10 - 21 

Size 12 - 65 

Size 14 - 12 

Size 16 - 3 

Size 18 or larger - 2 

 

Partially sighted: 

 

Size 10 - 4 

Size 12 - 14 

Size 14 - 6 

Size 16 - 2 

Size 18 or larger - 2 

 

Legally blind people: 

 

Size 10 - 0 

Size 12 – 2 

Size 14 - 0 

Size 16 - 1 

Size 18 or larger - 2 

 

Colour blind people: 

 

Size 10 - 1 

Size 12 - 2 

Size 14 – 1 

Size 16 - 0 

Size 18 or larger - 1 

 

 

 

 



Appendix C: The Questionnaire   -88- 

 

Question 11: Do you prefer buttons or key shortcuts? 

 

Buttons (via the mouse) - 26 

Keyboard shortcuts (especially if they are small buttons) - 9 

I use both - 55 

I don’t really mind - 15 

 

Partially sighted: 

 

Buttons - 5 

Keyboard - 3 

Both - 17 

No preference - 4 

 

Legally blind people: 

 

Buttons - 1 

Keyboard - 2 

Both - 2 

No preference - 1 

 

Colour blind people: 

 

Buttons - 1 

Keyboard - 1 

Both - 3 

No preference - 1 

 

Question 12: Out of the following interfaces, which to you is more usable (with regards to 

colour contrast, font size, font type, legibility)?  (NB: Larger versions were supplied) 

 

Note: I will change the button colours to a more appropriate shade of the background (as 

with the grey) on the other interfaces; these are just mock-ups. 

 

 

    

   

 



Appendix C: The Questionnaire   -89- 

 

Grey - 23 

Blue - 38 

Purple - 17 

Yellow - 3 

Pink - 12 

Brown - 1 

Green - 11 

 

Partially sighted  

 

Grey - 5 

Blue - 7 

Purple - 5 

Yellow - 1 

Pink - 4 

Brown - 0 

Green - 5 

Legally blind people: 

 

Grey - 1 

Blue - 2 

Purple – 1 

Yellow – 0 

Pink – 0 

Brown - 0 

Green - 1 

Colour blind people: 

 

Grey - 1 

Blue - 2 

Purple - 1 

Yellow – 1 

Pink – 0 

Brown - 0 

Green - 0 

 

 

Question 13: Out of the previous interfaces, which did you prefer? 

 

Grey - 20 

Blue - 39 

Purple - 22 

Yellow - 0 

Pink - 10 

Brown - 6 

Green - 7 

 

 

 



Appendix C: The Questionnaire   -90- 

 

Partially sighted: 

 

Grey - 4 

Blue - 6 

Purple - 6  

Yellow - 0 

Pink - 6 

Brown - 1 

Green - 3 

 

Legally blind people: 

 

Blue – 2 

Grey - 0 

Purple – 1 

Yellow - 0 

Pink – 1 

Brown - 0 

Green - 1 

 

Colour blind people:  

 

Grey - 1 

Blue - 2 

Purple – 1 

Yellow – 0 

Pink - 0 

Brown – 1 

Green - 0 

 

Question 14: Aside from the colours, what are your opinions of the above interface? 

 

ADG135 -- Looks good, decent sized buttons 

ADG357 -- I am a sucker for the MacLook (i.e brushed metallic, clean look) 

ADG579 -- I would prefer the function buttons (below the major window) to be above it and to 

the left. 

ADG681 -- I do not care about the colours, but the background/text on the buttons is not high 

enough contrast 

ADG824 -- I think the navigation buttons should be at the top left instead of bottom right. 

ADG924 -- Using Zoom text at a magnification of 1.5x, I could only read 2 of the words 

JMP147 -- Use JAWS for screen reading...as long as alt-text is included I am fine 

JMP369 -- Simple and attractive 

JMP471 -- Very handy...though I do want to see it in action...I also want to see what the other 

buttons do... 

MSC905-- Very simple, a little bland, but very easy to read, easy on the eyes, and easy to 

navigate 

JMP582 -- The green is too dark to have black text on it.  The yellow is too bright - I would not 

be able to focus on the window contents.  The brown is simply an unappealing colour.  The 

others are all workable, though the grey is a little alienating. 



Appendix C: The Questionnaire   -91- 

 

JMP693 -- Very good - navigation buttons in bottom right may be better suited at top left to fall 

inline with most common applications, and to be picky, maybe the 'ZigZag view' button could be 

dropped below the dashed square, creating a single group of buttons 

SVY261 -- Simple and easy to use/understand. 

SVY372 -- It is reasonably uncluttered.   

SVY837 -- I thought the contrast between the button text and button could have been greater.  

Dark grey and black are not the best, in my opinion, for the visually impaired.  I would suggest 

light grey and black. 

BEH567 -- It looks nice and simple, uncluttered, clean, etc. :) 

BEH912 -- They are neat and not too cluttered with buttons 

CFK483 -- Easy to read, nice size buttons 

CFK615 -- Rather plain, but easy to navigate 

LQU342 -- The blue and yellow interfaces make nice contrasts 

LQU453 -- I liked it, it looks easy enough to use and also has a visually attractive setup 

MSC110 -- It is a nice interface, well put together! 

LQU786 -- It is set up so everything is easily accessed. 

LQU918 -- Pretty basic, but very easy to read. 

NRW123 -- Very user friendly 

NRW345 -- Easy to understand 

NRW456 -- Clear, easy to read 

NRW678 -- Nice and simple.  I approve. 

OTX876 -- Easy to use, clearly laid out. 

OTX654 -- The grey has little contrast.  The brown is a hideous shade, and the yellow is too 

bright.  I liked the other shades.  Although, with how my monitor is set, I like the green the best. 

OTX219 -- Simplistic, looks very Bauhaus. 

OTX198 -- It seems basic enough.  I do not know what the buttons mean, but I doubt it would 

take much explanation.  Are "tags" used to search images by keywords (i.e., a picture of a Monet 

would have "impressionism", etc as its tags)?  That would be good. 

ZIQ642 -- I like it, easy to understand 

ZIQ429 -- Clear and concise; very simple and user-friendly 

ZIQ297 -- I liked the font sizes and legibility 



Appendix C: The Questionnaire   -92- 

 

OJS474 -- It is simple and fairly straightforward.  I like it, overall.  Keep it simple is my biggest 

rule of thumb, personally.  I am not seeing much difference in the interfaces except in colours so 

I am not sure I understand what you are asking, beyond colour. 

OJS278 -- Blue and pink are the easiest to read/work with 

UON287 -- I like how plain they are.  I prefer plain interfaces to very 'artistic' and complicated 

ones. 

UON465 -- I like how the font lies on the purple interface...it is nice and readable. 

ITD422 -- The pastel shades are less harsh on the eyes than the bolder ones. 

ANT184 -- The places with non-anti-aliased fonts ("Connect," "undefined") were jarring.  (NB: 

Fixed the anti-aliasing) 

 

 

Question 15: Do you have any other comments you would like to add?  Do you have any 

questions you think I should have asked?  

 

ADG357 -- Colours are what make a page unique; It is hard to say "I like $foo and $bar"; for me 

it depends on what the actual page looks like when put together. 

 

I do not think your font size question is fair.  With Tahoma (the font I usually set my browser to) 

I have 12pt for text areas but 10px for the actual display.  Also, if I were to use Times New 

Roman, I'd set it at 12, so if you're looking for information to say "Okay 50 people picked Times 

New Roman" but "Oh everyone reads their pages at 14px" that's not fair unless you can say "Oh, 

but the 50 who picked Times New Roman view it at 10px".  (NB: I have checked this). 

 

JMP147 -- There are no questions about accessibility for totally blind people using screen readers 

 

JMP582 -- For me the question is less /which/ colour than how colour is used.  

 

I agree that font size is pretty arbitrary since each typeface varies.  In addition, the question of 

typeface (font) is problematic for me because it begs the question, "For /what/?”  I like Comic 

Sans, which I checked off, but only for informal, familiar kinds of writing, and not for large 



Appendix C: The Questionnaire   -93- 

 

blocks of text.  For something to appear literate and professional, I think Time New Roman is 

best, although you have to keep an eye on it to make sure it is not too small.  For more technical 

writing, one generally wants a sans-serif typeface: I like Arial better than Verdana.  I do not know 

Tahoma at all and so could not compare. 

 

About colour: although my vision isn't perfect, my main limitation when it comes to viewing 

images is not my actual eyesight but the fact that I have ADD and have difficulty focusing.  That 

means that really bright colours need to be used sparingly for me: they are best suited to images 

which are important to the content of the page (because I /will/ look at them, whether I want to or 

not) but not for either text or backgrounds.  Contrast is extremely important; otherwise my brain 

is convinced that my eyes cannot see properly. 

 

In addition, I find colour-coding to be an extremely important tool.  Having all things that belong 

in one category in one colour, and changing the colour of the background or the text or both to 

mark a change in subject matter is very helpful to me. 

 

JMP693 -- Just to add on the other one, I would find it easier if direction buttons were put in 2 or 

3 rows like on the keyboard arrows or numpad arrows, nice design! 

 

SVY372 -- I just do not know fonts well enough to know which I like, but Sans Serif seems to be 

better, I think in general.  Oh, and I have general decreased colour vision across the spectrum, but 

nothing specific.  I mix up what colour things are sometimes. 

 

SVY726 -- For clarification, I picked 10pt for email.  On a webpage I would probably go a bit 

bigger.  

 

BEH567 -- I actually prefer a font size of 11px.  ;) 

 

CFK726 -- White backgrounds make text difficult to read because it is like staring at a light bulb 

all the time. 

 



Appendix C: The Questionnaire   -94- 

 

LQU918 -- Large bold type is easy to read. 

 

OTX198 -- The yellow interface was too bright; the brown one was ugly; the green one was too 

low-contrast.  (Make the greys lighter and the green darker.  A nice forest green is a good 

comfortable shade.) 

 

OJS712 -- As far as serif/sans fonts and readability are concerned, it is a toss-up for me.  On 

paper, serif is usually best.  On screen, serif is sometimes best, but at small sizes, it can be worse 

than sans.  It varies by font.  Tahoma /Verdana are all right at reasonable sizes 

 

I am the one (!) who picked the brown interface.  I know it does not look great with the current 

grey buttons, but I happen to find the brown/black combination rather soothing to my eyes. 

 

As far as fonts go, if I see something written in Comic Sans, I start conjuring up ideas of how 

terribly misguided and incompetent the person responsible for the use of the font must be.  I am 

probably wrong, but that is what it makes me think.  Someone once asked me what I had against 

it (she thought "it looks fun!").  I think it might have looked fun the first few times I saw it, 

before it became the universal "fun" font.  Honestly, I simply have a hard time paying attention to 

things written in Comic Sans because I have seen it misused so many times, trying to bring about 

a sense of frivolity to situations where it really is not appropriate.  You will never catch me using 

Comic Sans on anything. 

 

I have some personal issues with Arial as well.  At certain point sizes, it looks really, really nice.  

At others, it does not.  I just typed up a test sentence in Arial and increased the font point by 

point.  It does some really funky things between point sizes, to the point where at times it looks 

like a different typeface.  That, and there is the issue with its history as a Helvetica knockoff... 

 

OJS474 -- Colours/complex design should be minimal to keep the buttons, etc. more visible/in 

focus.  Strong colours should be reserved for things like error messages.  Simple & 

straightforward are key to user-friendliness! 

 



Appendix C: The Questionnaire   -95- 

 

ITD239 -- The only other question I would ask is why a particular colour combination or setup is 

preferred.  For me, it's 'traditional' to see black on white: I am more comfortable with it.  As to 

the issue of blue v. any other colour, it's 'cooler' on my eyes. 

 

ANT184 -- Note that fonts in bitmaps appear as different sizes.  I use 90 dpi at home and 75 dpi 

at work, but expect 10 pt. to be the same physical size on both. 

 

I have slightly odd colour vision.  I am not colour-blind, but my blue vision is unusual.  As far as 

I can tell, and I have not tested this formally, my blue receptors respond to a very slightly higher 

frequency than normal.  (Alternative hypothesis: my corneas are slightly more transmissive at 

higher frequencies than usual.  I have not thought of a good way to test the difference.)  In 

practical terms, here are several effects, none of them very noticeable: 

 

There is a narrow band of colours that others see as blue-green that I see as grey.  It is a very 

small range of colours, but I had a closet in a dorm room that was painted this shade.  It annoyed 

me considerably.  Occasionally I will see very faint purple patterns in flowers that others see as 

pure white. 

 

A friend of mine was experimenting with fluorescent glazes.  He was showing samples of them 

under a long-wave UV light.  While everyone could see the light itself as purple (cheap long-

wave filters are never very sharp), I saw its non-specular reflection in the ceramic substrate he 

was testing the glazes on as a very bright royal purple, where everyone else saw a faint reddish 

purple.  This was the clear, repeatable effect that convinced me I was not imagining or 

exaggerating things. 

 

The effect is inherited; my mother sees things the same way. 

 



Appendix D: Code Listing         -96- 

 

 

 

Appendix D: Code Listing 

 

 

D.1. Actionscript from Actions Layer, Frame 1, Scene 1 (Preloader) 

 

 

var bytesloaded = Number(getBytesLoaded()); 

var bytestotal = Number(getBytesTotal()); 

 

if (bytesloaded >= bytestotal)  

{ 

 gotoAndStop(6); 

} 

 

var per = bytesloaded/bytestotal*100; 

setProperty("_root.bar", _xscale, per); 

var percent_t = math.round(per)+"%"; 

 

 

 

D.2. Actionscript from Connection Layer, Scene 2 

 

 

// The following script is adapted for Flash MX and zzImage by Jo Carter 

// From comms_engine.as, query.as and query_stack.as (Flash MX 2004) 

// Original code copyright (c) 2005, James Goulding, Chris Coleman 

// Licensed under the Apache License, version 2.0 

//           http://www.apache.org/licenses/LICENSE-2.0 

 

var query_counter = 0; 

var query_store; 

var connected = false; 



Appendix D: Code Listing         -97- 

 

var connect_msg; 

var is_connected; 

var normal = false; 

 

 

// Ensure that connection status is passed between pages 

if (is_connected == true)  

{ 

 connected = true; 

} 

 

// Query class 

function query(_query_id,  

      _function_name,  

      _param)  

{ 

 this.query_id = _query_id; 

 this.function_name = _function_name; 

 this.param = _param; 

} 

 

// Query stack class 

function query_stack()  

{ 

 trace("creating query stack"); 

 this.queries = new Array(); 

} 

 

// Add a query to the stack 

query_stack.prototype.add_entry = function(query_id,  

           function_name,  

           param)  

{ 

 this.queries[this.queries.length] = new query(query_id,  

function_name, param); 

}; 



Appendix D: Code Listing         -98- 

 

// Remove an entry 

query_stack.prototype.remove_entry = function(query_id)  

{ 

 for (var i = 0; i<this.queries.length; i++)  

 { 

  if (this.queries[i].query_id == query_id)  

  { 

   delete this.queries[i]; 

   this.queries.splice(i, 1); 

   break; 

  } 

 } 

}; 

 

// Check whether the query stack is empty 

query_stack.prototype.is_empty = function()  

{ 

 if (this.queries.length == 0)  

 { 

  return true; 

 }  

 else  

 { 

  return false; 

 } 

}; 

 

// Find a query in the stack 

query_stack.prototype.find_entry = function(query_id)  

{ 

 for (var i = 0; i<this.queries.length; i++)  

 { 

  if (this.queries[i].query_id == query_id)  

  { 

   return this.queries[i]; 

   break; 



Appendix D: Code Listing         -99- 

 

  } 

 } 

 return null; 

}; 

 

////////////////////////////////////////////////// 

var xsock; 

 

// This script connects to the mantra server 

function server_connect()  

{ 

 // Depending on whether connecting from campus, or via a HTTP tunnel 

 //var ip = "128.243.20.74"; 

 //var port = "8109"; 

 var ip = "127.0.0.1"; 

 var port = "4444"; 

  

 xsock = new XMLSocket(); 

 trace("---> connecting to mantra server at ["+ip+"] on port  

["+port+"]..."); 

 xsock.onData = process_xml_message; 

 xsock.connect(ip, port); 

  

 query_store = new query_stack(); 

 connected = true; 

 is_connected = true; 

 connect_msg = "Disconnect"; 

} 

 

// Disconnects from server 

function server_disconnect()  

{ 

 trace("system: disconnecting from mantra server"); 

 xsock.close(); 

  

 connected = false; 



Appendix D: Code Listing         -100- 

 

 is_connected = false; 

 connect_msg = "Connect"; 

} 

 

// When data is received from the server, it must be processed 

// The data received should be a <response> 

function process_xml_message(msg)  

{ 

 var xml_doc = new XML(msg); 

 var node = xml_doc.firstChild.firstchild.nodeName; 

  

 if (node == "response")  

 { 

  process_query_response(xml_doc); 

 }  

 else  

 { 

  process_unknown_response(xml_doc); 

 } 

} 

 

// Processes message received from server, finds the function that needs 

// the query, and executes it. 

function process_query_response(xml_doc)  

{ 

 var response_id = xml_doc.firstChild.firstChild.attributes.id; 

 trace("message received from server: ["+xml_doc+"]..."); 

 var query_match = query_store.find_entry(response_id); 

  

 if (query_match == null)  

 { 

  // response not in query stack - we have a problem! 

  trace("error: matching query for response cannot be found"); 

 }  

 else  

 { 



Appendix D: Code Listing         -101- 

 

  query_store.remove_entry(response_id); 

  // execute the command it is for 

  query_match.function_name(xml_doc, query_match.param); 

 } 

} 

 

function process_unknown_response(xml_doc)  

{ 

 trace("error: received message is unrecognisable."); 

 trace(xml_doc); 

} 

 

// Submits query and returns query id 

function submit_query(query, function_name, param)  

{ 

 var query_id = query_counter; 

 query_store.add_entry(query_id, function_name, param); 

 send_query(query, query_id); 

 query_counter++; 

} 

 

// This function sends a query to the mantra server, and creates the XML 

function send_query(query, query_id)  

{ 

 var xml_doc = new XML(); 

  

 var message_tag = xml_doc.createElement("mantra"); 

 var query_tag = xml_doc.createElement("query"); 

 var content_tag = xml_doc.createTextNode(query); 

  

 query_tag.attributes.id = query_id; 

 query_tag.appendChild(content_tag); 

 message_tag.appendChild(query_tag); 

 xml_doc.appendChild(message_tag); 

  

 trace("---> message sent ["+xml_doc+"]"); 



Appendix D: Code Listing         -102- 

 

 xsock.send(xml_doc); 

} 

 

 

 

D.3. Actionscript from Actions Layer, Frame 1 (ZigZag View), Scene 2 

 

 

var dim_up; 

var dim_across; 

var node_row; 

var current_nodes; 

var cursor; 

var show_addresses; 

var refresh_interval; 

var current_cell; 

 

// Grey out buttons 

if (connected == true)  

{ 

 enable_buttons(); 

} 

else  

{ 

 disable_buttons(); 

}  

 

function enable_buttons()  

{ 

 load_cells._alpha = 100; 

 load_text.textColor = 0x000000; 

 load_cells.enabled = true; 

 add_image._alpha = 100; 

 add_text.textColor = 0x000000; 

 add_image.enabled = true; 

} 



Appendix D: Code Listing         -103- 

 

// Enable the other buttons 

function enable_2buttons()  

{ 

 home._alpha = 100; 

 home_text.textColor = 0x000000; 

 home.enabled = true; 

 show._alpha = 100; 

 show_text.textColor = 0x000000; 

 show.enabled = true; 

 flip._alpha = 100; 

 flip_text.textColor = 0x000000; 

 flip.enabled = true; 

} 

 

function disable_buttons()  

{ 

 load_cells._alpha = 40; 

 load_text.textColor = 0x6C6C6C; 

 load_cells.enabled = false; 

 home._alpha = 40; 

 home_text.textColor = 0x6C6C6C; 

 home.enabled = false; 

 show._alpha = 40; 

 show_text.textColor = 0x6C6C6C; 

 show.enabled = false; 

 flip._alpha = 40; 

 flip_text.textColor = 0x6C6C6C; 

 flip.enabled = false; 

 add_image._alpha = 40; 

 add_text.textColor = 0x6C6C6C; 

 add_image.enabled = false; 

} 

 

// This functionality has not been added yet, so these stay disabled. 

edit_image._alpha = 40; 

edit_text.textColor = 0x6C6C6C; 



Appendix D: Code Listing         -104- 

 

edit_image.enabled = false; 

 

stop(); 

 

// Connect to server 

// The main functions specified here are called by the various buttons 

function connect_to_server()  

{ 

 if (connected == false)  

 { 

  server_connect(); 

  enable_buttons(); 

 }  

 else  

 { 

  server_disconnect(); 

  clear_layout(); 

  load_text.text = "Load Cells"; 

  disable_buttons(); 

 } 

} 

 

 

// The following code has been modified for use in Flash MX by Jo Carter 

// From view_nodes.as, mantra_node.as, controller.as and model_nodes.as  

// (Flash MX 2004) 

// Original code copyright (c) 2005 James Goulding, Chris Coleman 

// Licensed under the Apache License, version 2.0 

//      http://www.apache.org/license/LICENSE-2.0 

// mantra_node.as 

 

function mantra_node(_nri,  

      _content,  

      _target_xpos,  

      _target_ypos,  

      _target_height,  



Appendix D: Code Listing         -105- 

 

      _target_width)  

{ 

 //trace("creating mantra node for nri " + _nri); 

 this.nri = _nri; 

 this.content = _content; 

 this.target_xpos = _target_xpos; 

 this.target_ypos = _target_ypos; 

 this.target_height = _target_height; 

 this.target_width = _target_width; 

 this.mc = new MovieClip(); 

 this.current_xpos = 0; 

 this.current_ypos = 0; 

 this.current_height = 0; 

 this.current_width = 0; 

} 

 

mantra_node.prototype.activate = function()  

{ 

 mc.sensor.onPress = sensor_on_release; 

 mc.sensor.onRollOver = sensor_on_rollover; 

 mc.sensor.onRollOut = sensor_on_rollout; 

 mc.sensor.enabled = true; 

}; 

 

 

// mantra_nodes.as 

 

function initialise()  

{ 

 trace("initialise"); 

 dim_across = "d.contains"; 

 dim_up = "d.set"; 

 // address of "zzImage" 

 cursor = "0.0.33"; 

} 

 



Appendix D: Code Listing         -106- 

 

function set_cursor(_cursor)  

{ 

 trace("set cursor"); 

 cursor = _cursor.nri; 

} 

 

function construct_layout()  

{ 

 var date = new Date(); 

 var milli = date.getMilliseconds(); 

 trace("constructing layout at " + milli); 

  

 clear_nodes(); 

 node_row = new Array(7); 

 current_nodes = new Array(); 

  

 var query = cursor+" | fetch this to +3 along \""+dim_across+"\" |  

resolve"; 

 submit_query(query, process_right); 

 query = cursor+" | fetch -1 to -3 along \""+dim_across+"\" |  

resolve"; 

 submit_query(query, process_left); 

} 

 

function clear_layout()  

{ 

 trace("clearing layout"); 

  

 clear_nodes(); 

 current_nodes = new Array(); 

  

 dim_up = "undefined"; 

 dim_across = "undefined"; 

} 

 

 



Appendix D: Code Listing         -107- 

 

function check_completion()  

{ 

 if (query_store.is_empty() == true)  

 { 

  update(current_nodes); 

 } 

} 

 

function process_right(xml_content)  

{ 

 trace("process right"); 

  

 // Get array of returned nodes 

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 // If the specified range does not exist then it cannot be processed 

 if (nodes[0].nodeName == "error" || nodes[0].nodeName == "warning")  

 { 

  return; 

 } 

  

 for (var i=0; i<nodes.length; i++)  

 { 

  var nri = nodes[i].attributes.nri; 

  var content = nodes[i].firstChild; 

   

  if (!content)  

  { 

   content = ""; 

  } 

   

  current_nodes.push(new mantra_node(nri, content, (i*103), 0,  

25, 102)); 

   

 

 



Appendix D: Code Listing         -108- 

 

  // Query for down rank 

  var query = nri+" | fetch next to +6 along \""+dim_up+"\" |  

resolve"; 

  submit_query(query, process_down, i); 

   

  // Query for up rank 

  query = nri+" | fetch prev to -6 along \""+dim_up+"\" |  

resolve"; 

  submit_query(query, process_up, i); 

 } 

} 

 

function process_left(xml_content)  

{ 

 trace("process left"); 

  

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName == "error" || nodes[0].nodeName == "warning")  

 { 

  return; 

 } 

  

 for (var i=0; i<nodes.length; i++)  

 { 

  var nri = nodes[i].attributes.nri; 

  var content = nodes[i].firstChild; 

   

  if (!content)  

  { 

   content = ""; 

  } 

   

  current_nodes.push(new mantra_node(nri, content, -((i+1)*103),  

0, 25, 102)); 

   



Appendix D: Code Listing         -109- 

 

  // Query for down rank 

  var query = nri+" | fetch next to +6 along \""+dim_up+"\" |  

resolve"; 

  submit_query(query, process_down, -(i+1)); 

   

  // Query for up rank 

  query = nri+" | fetch prev to -6 along \""+dim_up+"\" |  

resolve"; 

  submit_query(query, process_up, -(i+1)); 

 } 

} 

 

function process_up(xml_content, index)  

{ 

 trace("process up, index " + index); 

  

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName == "error" || nodes[0].nodeName == "warning")  

 { 

  check_completion() 

  return; 

 } 

  

 for (var i=0; i<nodes.length; i++)  

 { 

  var nri = nodes[i].attributes.nri; 

  var content = nodes[i].firstChild; 

   

  if (!content)  

  { 

   content = ""; 

  } 

   

  current_nodes.push(new mantra_node(nri, content, (index*103),  

         -((i+1)*27), 25, 96)); 



Appendix D: Code Listing         -110- 

 

 } 

  

 check_completion() 

} 

 

function process_down(xml_content, index)  

{ 

 trace("process down, index " + index); 

  

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName == "error" || nodes[0].nodeName == "warning")  

 { 

  check_completion() 

  return; 

 } 

  

 for (var i=0; i<nodes.length; i++)  

 { 

  var nri = nodes[i].attributes.nri; 

  var content = nodes[i].firstChild; 

   

  if (!content)  

  { 

   content = ""; 

  } 

   

  current_nodes.push(new mantra_node(nri, content, (index*103),  

         ((i+1)*27), 25, 96)); 

 } 

  

 check_completion() 

} 

 

 

 



Appendix D: Code Listing         -111- 

 

// controller.as 

 

function initialise_display()  

{ 

 trace("initialise display"); 

  

 show_addresses = false; 

 show_text.text = "SHOW"; 

 load_text.text = "Reload Cells"; 

 enable_2buttons(); 

  

 initialise(); 

 construct_layout(); 

} 

 

function node_on_press(new_cursor)  

{ 

 trace("node on press"); 

  

 set_cursor(new_cursor); 

 construct_layout(); 

} 

 

function home_on_press()  

{ 

 trace("home on press"); 

 // zzImage address 

 cursor = "0.0.33"; 

  

 construct_layout(); 

} 

 

function flip_dims()  

{ 

 trace("flipping dims"); 

  



Appendix D: Code Listing         -112- 

 

 var temp = dim_up; 

 dim_up = dim_across; 

 dim_across = temp; 

  

 construct_layout(); 

} 

 

 

// View_nodes.as 

 

// Find the node in the array 

function match_node(nri) 

{  

 for (var i=0; i<current_nodes.length; i++) 

 { 

  if (current_nodes[i].nri == nri)  

  { 

   return i; 

  } 

 } 

 return -1; 

} 

function update_focus_node(focus_node)  

{ 

 current_cell = focus_node.nri; 

 var query = current_cell + " | fetch all along \"d.type\" |  

resolve"; 

 _root.submit_query(query, checkType); 

} 

 

function checkType(xml_doc)  

{ 

 xmlNode = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode[1].firstChild == "t.image")  

 { 



Appendix D: Code Listing         -113- 

 

  thumbnail2.loadMovie(xmlNode[0].firstChild); 

  thumbnail2._xscale = 25; 

  thumbnail2._yscale = 25; 

   

  var query = current_cell+' | fetch +1 along \"d.name\" |  

resolve'; 

  _root.submit_query(query, showName); 

  query = current_cell+' | fetch +1 along \"d.date\" | resolve'; 

  _root.submit_query(query, showDate); 

  query = current_cell+' | fetch +1 along \"d.tags\" | fetch all  

along \"d.set\" | resolve'; 

  _root.submit_query(query, showTags); 

 } 

} 

 

function showName(xml_doc)  

{ 

 xmlNode2 = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode2[0].attributes.nri == current_cell)  

 { 

  image_name.text = "[no name]"; 

 }  

 else  

 { 

  image_name.text = xmlNode2[0].firstChild; 

 } 

} 

 

function showDate(xml_doc)  

{ 

 xmlNode3 = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode3[0].attributes.nri == current_cell)  

 { 

  image_date.text = "[not defined]"; 



Appendix D: Code Listing         -114- 

 

 }  

 else  

 { 

  image_date.text = xmlNode3[0].firstChild; 

 } 

} 

 

function showTags(xml_doc)  

{ 

 xmlNode4 = xml_doc.firstChild.firstChild.childNodes; 

 var no_tags = false; 

 var _total = xmlNode4.length; 

  

 for (var i=0; i<_total; i++)  

 { 

  if (xmlNode4[i].attributes.nri == current_cell)  

  { 

   no_tags = true; 

  } 

 } 

  

 if (no_tags == true)  

 { 

  image_tags.text = "[no tags]"; 

 } 

 else  

 { 

  var tags; 

  tags = xmlNode4[0].firstChild; 

   

  for (var i = 1; i<_total; i++)  

  { 

   tags = tags+", "+xmlNode4[i].firstChild; 

  } 

   

  image_tags.text = tags; 



Appendix D: Code Listing         -115- 

 

 } 

} 

 

function clear_nodes()  

{ 

 trace("clearing nodes"); 

 for (var i=0; i<current_nodes.length; i++)  

 { 

// Need to set alpha to 0, because otherwise nodes will not 

disappear // off the screen 

 

  current_nodes[i].mc._alpha = 0; 

  nodes_mc.removeMovieClip(current_nodes[i].mc); 

 } 

} 

 

function refresh_nodes()  

{ 

 var finished = 1; 

  

 for (var i=0; i<current_nodes.length; i++)  

 { 

  var dif_xpos = current_nodes[i].target_xpos –  

current_nodes[i].mc._x; 

  var dif_ypos = current_nodes[i].target_ypos –  

current_nodes[i].mc._y; 

  var dif_height = current_nodes[i].target_height  

- current_nodes[i].mc._height; 

  var dif_width = current_nodes[i].target_width  

- current_nodes[i].mc._width; 

   

  // Update the node's x position on screen 

  if (Math.abs(dif_xpos) > 2)  

  {  

   finished = 0; 

   current_nodes[i].mc._x += (dif_xpos/4);  



Appendix D: Code Listing         -116- 

 

  } 

  else  

  { 

   current_nodes[i].mc._x = current_nodes[i].target_xpos;  

  } 

   

  // Update the node's y position on screen 

  if (Math.abs(dif_ypos) > 2)  

  { 

   finished = 0; 

   current_nodes[i].mc._y += (dif_ypos/4);  

  } 

  else  

  { 

   current_nodes[i].mc._y = current_nodes[i].target_ypos;  

  } 

 

  // Update the node's width on screen 

  if (Math.abs(dif_width) > 2)  

  { 

   finished = 0; 

   current_nodes[i].mc._width += (dif_width/4);  

  } 

  else  

  { 

   current_nodes[i].mc._width =  

current_nodes[i].target_width;  

  } 

 

  // Update the node's height on screen 

  if (Math.abs(dif_height) > 2)  

  { 

   finished = 0; 

   current_nodes[i].mc._height += (dif_height/4);  

  } 

  else  



Appendix D: Code Listing         -117- 

 

  { 

   current_nodes[i].mc._height =  

current_nodes[i].target_height;  

  } 

 } 

  

 if (finished)  

 { 

  clearInterval(refresh_interval); 

 } 

} 

 

function update(update_nodes)  

{ 

 trace("update nodes"); 

 clear_nodes(); 

 

 for (var i=0; i<update_nodes.length; i++)  

 { 

  // Find the nri in the current nodes 

  var match = match_node(update_nodes[i].nri); 

   

  // If exists then: 

  if (match >= 0)  

  { 

   // Copy ALL current info across apart from the NRI which  

// is obviously the same and the content which may have  

// changed 

   update_nodes[i].current_xpos =  

current_nodes[match].target_xpos; 

   update_nodes[i].current_ypos =  

current_nodes[match].target_ypos; 

   update_nodes[i].current_height =  

current_nodes[match].target_height; 

   update_nodes[i].current_width =  

current_nodes[match].target_width; 



Appendix D: Code Listing         -118- 

 

  } 

  // If doesn't exist 

  else  

  { 

   // Set node's current info to target 

   update_nodes[i].current_xpos =  

update_nodes[i].target_xpos; 

   update_nodes[i].current_ypos =  

update_nodes[i].target_ypos; 

   update_nodes[i].current_height =  

update_nodes[i].target_height; 

   update_nodes[i].current_width =  

update_nodes[i].target_width; 

  } 

 

  // Create MovieClip, and position appropriately according to  

// information that just set in previous statements 

  update_nodes[i].mc = nodes_mc.attachMovie("node_container",  

           "node_container_"+i,  

           (30+i)); 

 

  update_nodes[i].mc._x = update_nodes[i].current_xpos; 

  update_nodes[i].mc._y = update_nodes[i].current_ypos; 

  update_nodes[i].mc._height = update_nodes[i].current_height; 

  update_nodes[i].mc._width = update_nodes[i].current_width; 

  update_nodes[i].mc.node_content = update_nodes[i].content; 

   

  if (show_addresses)  

  { 

   update_nodes[i].mc.node_nri = update_nodes[i].nri; 

  } 

  else  

  { 

   update_nodes[i].mc.node_nri = ""; 

  } 

   



Appendix D: Code Listing         -119- 

 

  update_nodes[i].activate(); 

 } 

  

 current_nodes = new Array; 

 current_nodes = update_nodes; 

  

 var date = new Date(); 

 var milli = date.getMilliseconds(); 

 trace("layout constructed at " + milli); 

 

 refresh_interval = setInterval(refresh_nodes, 40); 

} 

 

function switch_addresses_show()  

{ 

 if (show_addresses)  

 { 

  show_addresses = false; 

  show_text.text = "SHOW"; 

  addresses_hide(); 

 } 

 else  

 { 

  show_addresses = true; 

  addresses_show(); 

  show_text.text = "HIDE"; 

 } 

} 

 

function addresses_show()  

{ 

 trace("show addresses"); 

  

 for (var i=0; i<current_nodes.length; i++)  

 { 

  current_nodes[i].mc.node_nri = current_nodes[i].nri; 



Appendix D: Code Listing         -120- 

 

 } 

} 

 

function addresses_hide()  

{ 

 trace("hide addresses"); 

  

 for (var i=0; i<current_nodes.length; i++)  

 { 

  current_nodes[i].mc.node_nri = ""; 

 } 

} 

 

function sensor_on_press(nri)  

{ 

 trace("sensor on press"); 

 node_on_press(nri); 

} 

 

function sensor_on_rollover(nri)  

{ 

 trace("sensor on rollover"); 

 update_focus_node(nri); 

} 

 

 

 

D.4. Actionscript from Dim Pop-ups, Frame 1, Scene 2 

 

 

D.4.1. Methods Layer 

 

function populateDims(xml_doc)  

{ 

 var xmlNode = xml_doc.firstChild.firstChild.childNodes; 

 var total = xmlNode.length; 



Appendix D: Code Listing         -121- 

 

  

 for (var i = 0; i<total; i++)  

 { 

  dimScroll.addItem(xmlNode[i].firstChild); 

 } 

} 

 

 

D.4.2. Actions Layer 

 

popupTitle.text = "DIMENSIONS (1)"; 

var dim_query = "gather dims | resolve"; 

_root.submit_query(dim_query, populateDims); 

 

stop(); 

 

 

D.4.3. Close Button 

 

on (release, keyPress "1")  

{ 

 _root.dim_up = dimScroll.getSelectedItem().label; 

 _root.construct_layout(); 

 gotoAndStop(1); 

} 

 

 

 

D.5. Actionscript from Action Layer, Frame 2 (Normal View), Scene 2 

 

 

var current_cell; 

var p; 

var total; 

var image; 

var description; 



Appendix D: Code Listing         -122- 

 

// Grey out unused buttons 

if (connected == true)  

{ 

 enable_buttons(); 

}  

else  

{ 

 disable_buttons(); 

} 

 

function enable_buttons()  

{ 

 load_button._alpha = 100; 

 load_images.textColor = 0x000000; 

 load_button.enabled = true; 

 add_image._alpha = 100; 

 add_text.textColor = 0x000000; 

 add_image.enabled = true; 

} 

 

function disable_buttons()  

{ 

 load_button._alpha = 40; 

 load_images.textColor = 0x6C6C6C; 

 load_button.enabled = false; 

 home._alpha = 40; 

 home_text.textColor = 0x6C6C6C; 

 home.enabled = false; 

 add_image._alpha = 40; 

 add_text.textColor = 0x6C6C6C; 

 add_image.enabled = false; 

} 

 

// This functionality has not been added yet, so these stay disabled. 

edit_image._alpha = 40; 

edit_text.textColor = 0x6C6C6C; 



Appendix D: Code Listing         -123- 

 

edit_image.enabled = false; 

goto._alpha = 40; 

goto_text.textColor = 0x6C6C6C; 

goto.enabled = false; 

back._alpha = 40; 

back_text.textColor = 0x6C6C6C; 

back.enabled = false; 

 

stop(); 

 

// Connect to server 

// The buttons call the methods specified in this code 

function connect_to_server()  

{ 

 if (connected == false)  

 { 

  server_connect(); 

  enable_buttons(); 

 }  

 else  

 { 

  server_disconnect(); 

  load_images.text = "Load Images"; 

  disable_buttons(); 

 } 

} 

 

// Load images 

function load_images()  

{ 

 var dim_query = '0.0.34 | fetch tail along \"d.contains\" | fetch  

all along \"d.set\" | resolve'; 

 _root.submit_query(dim_query, createSlideshow); 

 p = 0; 

 load_images.text = "Reload Images"; 

  



Appendix D: Code Listing         -124- 

 

 // Enable other button 

 home._alpha = 100; 

 home_text.textColor = 0x000000; 

 home.enabled = true; 

} 

 

// Create the slideshow 

function createSlideshow(xml_doc)  

{ 

 xmlNode = xml_doc.firstChild.firstChild.childNodes; 

 image = []; 

 description = []; 

 total = xmlNode.length; 

  

 for (var i = 0; i<total; i++)  

 { 

  image[i] = xmlNode[i].firstChild; 

  description[i] = xmlNode[i].attributes.nri; 

 } 

  

 firstImage(); 

} 

 

// Populate the sidebar 

function showName(xml_doc)  

{ 

 xmlNode2 = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode2[0].attributes.nri == current_cell)  

 { 

  image_name.text = "[no name]"; 

 }  

 else  

 { 

  image_name.text = xmlNode2[0].firstChild; 

 } 



Appendix D: Code Listing         -125- 

 

 var dim_query = current_cell+' | fetch +1 along \"d.date\" |  

resolve'; 

 _root.submit_query(dim_query, showDate); 

} 

 

function showDate(xml_doc)  

{ 

 xmlNode3 = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode3[0].attributes.nri == current_cell)  

 { 

  image_date.text = "[not defined]"; 

 }  

 else  

 { 

  image_date.text = xmlNode3[0].firstChild; 

 } 

  

 var dim_query = current_cell+' | fetch +1 along \"d.caption\" |  

resolve'; 

 _root.submit_query(dim_query, showCaption); 

} 

 

function showCaption(xml_doc)  

{ 

 xmlNode4 = xml_doc.firstChild.firstChild.childNodes; 

  

 if (xmlNode4[0].attributes.nri == current_cell)  

 { 

  desc_txt.text = "[no caption]"; 

 }  

 else  

 { 

  desc_txt.text = xmlNode4[0].firstChild; 

 } 

  



Appendix D: Code Listing         -126- 

 

 var dim_query = current_cell+' | fetch +1 along \"d.tags\" | fetch  

all along \"d.set\" | resolve'; 

 _root.submit_query(dim_query, showTags); 

} 

 

function showTags(xml_doc)  

{ 

 xmlNode5 = xml_doc.firstChild.firstChild.childNodes; 

 var no_tags = false; 

 var _total = xmlNode5.length; 

  

 for (var i = 0; i<_total; i++)  

 { 

  if (xmlNode5[i].attributes.nri == current_cell)  

  { 

   no_tags = true; 

  } 

 } 

  

 if (no_tags == true)  

 { 

  image_tags.text = "[no tags]"; 

 }  

 else  

 { 

  var tags = xmlNode5[0].firstChild; 

   

  for (var i=1; i<_total; i++)  

  { 

   tags = tags+", "+xmlNode5[i].firstChild; 

  } 

   

  image_tags.text = tags; 

 } 

} 

 



Appendix D: Code Listing         -127- 

 

// Display images/ navigation etc 

this.onEnterFrame = function()  

{ 

 filesize = picture.getBytesTotal(); 

 loaded = picture.getBytesLoaded(); 

 preloader._visible = true; 

  

 if (loaded != filesize)  

 { 

  setProperty("_root.preloader", _xscale, 100*loaded/filesize); 

 }  

 else  

 { 

  preloader._visible = false; 

   

  if (picture._alpha<100)  

  { 

   picture._alpha += 10; 

  } 

 } 

}; 

 

function nextImage()  

{ 

 // Loop through array infinitely 

 if (p<(total-1))  

 { 

  p++; 

 }  

 else  

 { 

  p = (p+1-total); 

 } 

  

 if (loaded == filesize)  

 { 



Appendix D: Code Listing         -128- 

 

  on_focus(description[p]); 

 } 

} 

 

function prevImage()  

{ 

 if (p>0)  

 { 

  p--; 

 }  

 else  

 { 

  p = (p-1+total); 

 } 

  

 if (loaded == filesize)  

 { 

  on_focus(description[p]); 

 } 

} 

 

function firstImage()  

{ 

 if (loaded == filesize)  

 { 

  on_focus(description[0]); 

 } 

} 

 

function picture_num()  

{ 

 current_pos = p+1; 

 pos_txt.text = current_pos+" / "+total; 

} 

 

 



Appendix D: Code Listing         -129- 

 

function on_focus(cell_address)  

{ 

 current_cell = cell_address; 

  

 picture._alpha = 0; 

 unloadMovie(picture); 

 loadMovie(image[p], picture); 

 picture_num(); 

  

 unloadMovie(thumbnail); 

 loadMovie(image[p], thumbnail); 

 thumbnail._xscale = 25; 

 thumbnail._yscale = 25; 

  

 var dim_query = current_cell+' | fetch +1 along \"d.name\" |  

resolve'; 

 _root.submit_query(dim_query, showName); 

} 

 

 

 

D.6. Actionscript from Actions Layer, Frame 3 (Add Image), Scene 2 

 

 

var image_nri; 

 

// Disable buttons not currently using 

add_tags._alpha = 40; 

tag_text.textColor = 0x6C6C6C; 

add_tags.enabled = false; 

add_folders._alpha = 40; 

folder_text.textColor = 0x6C6C6C; 

add_folders.enabled = false; 

 

stop(); 

 



Appendix D: Code Listing         -130- 

 

// Preview image 

function preview()  

{ 

 image_name.text = name.text; 

 image_caption.text = caption.text; 

 image_date.text = "[not defined]"; 

  

 _root.thumbnail3.loadMovie(image_url.text); 

 _root.thumbnail3._xscale = 25; 

 _root.thumbnail3._yscale = 25; 

} 

 

// Save Image 

function saveimage()  

{ 

 var image = image_url.text; 

  

 var query = "0.0.34 | fetch +1 along \"d.contains\" | fetch tail  

along \"d.set\" | "; 

 query = query + "create + along \"d.set\" | change content = \"" +  

image + "\""; 

 query = query + " | save slice 0"; 

 submit_query(query, savetype); 

} 

 

function savetype(xml_content)  

{ 

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 // If there is no error, then continue saving 

 if (nodes[0].nodeName != "error" && nodes[0].nodeName != "warning")  

 { 

   image_nri = nodes[0].attributes.nri; 

   var query = image_nri + " | create + along \"d.type\" |  

insert + 0.0.38 along \"d.clone\""; 

   query = query + " | save slice 0"; 



Appendix D: Code Listing         -131- 

 

   submit_query(query, savename); 

 } 

} 

 

function savename(xml_content)  

{ 

 var iname = name.text; 

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName != "error" && nodes[0].nodeName != "warning")  

 { 

  var query = image_nri + " | create + along \"d.name\" | change  

content = \""; 

  query = query + iname + "\" | create + along \"d.type\" |  

insert + 0.0.57 along \"d.clone\""; 

  query = query + " | save slice 0"; 

  submit_query(query, savecaption); 

 } 

} 

 

function savecaption(xml_content)  

{ 

 var icaption = caption.text; 

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName != "error" && nodes[0].nodeName != "warning")  

 { 

  var query = image_nri + " | create + along \"d.caption\" |  

change content = \""; 

  query = query + icaption + "\" | create + along \"d.type\" |  

insert + 0.0.57 along \"d.clone\""; 

  query = query + " | save slice 0"; 

  submit_query(query, saved); 

 } 

} 

 



Appendix D: Code Listing         -132- 

 

function saved(xml_content)  

{ 

 var nodes = xml_content.firstChild.firstChild.childNodes; 

  

 if (nodes[0].nodeName != "error" && nodes[0].nodeName != "warning")  

 { 

  save_text.text = "Saved!"; 

  save._alpha = 40; 

  save.enabled = false; 

 } 

} 


